用于高性能超级电容器和亚甲基蓝降解的cr2o3 -石墨烯纳米复合材料:合成和电化学分析

IF 6.8 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Asim , Javed Iqbal , Bilal Islam , Javaria Bashir , Nabeel Maqsood , Kateřina Skotnicová , Ahmad Nawaz
{"title":"用于高性能超级电容器和亚甲基蓝降解的cr2o3 -石墨烯纳米复合材料:合成和电化学分析","authors":"Muhammad Asim ,&nbsp;Javed Iqbal ,&nbsp;Bilal Islam ,&nbsp;Javaria Bashir ,&nbsp;Nabeel Maqsood ,&nbsp;Kateřina Skotnicová ,&nbsp;Ahmad Nawaz","doi":"10.1016/j.jsamd.2025.100939","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to enhance the photocatalytic performance of chromium oxide (Cr<sub>2</sub>O<sub>3</sub>) by incorporating graphene nanoplatelets (GNPs) to form Cr<sub>2</sub>O<sub>3</sub>/GNPs nanocomposites. Pristine Cr<sub>2</sub>O<sub>3</sub>, GNPs, and Cr<sub>2</sub>O<sub>3</sub>/GNPs nanocomposites were synthesized using a cost-effective ex-situ co-precipitation method at different stoichiometric ratios (7:3), (2:3), and (1:9). Structural characterization via X-ray diffraction and Raman spectroscopy confirmed that Cr<sub>2</sub>O<sub>3</sub> retained its rhombohedral phase across all compositions, with no evidence of phase transformation. A significant reduction in crystallite size by 50.0 %, 58.4 %, and 72.45 % was observed for the 7:3, 2:3, and 1:9 compositions, respectively, relative to pristine Cr<sub>2</sub>O<sub>3</sub>. Photocatalytic experiments revealed that the Cr<sub>2</sub>O<sub>3</sub>/GNPs (1:9) nanocomposite exhibited the highest methylene blue dye degradation efficiency, attributed to defect-induced charge separation and enhanced interfacial electron transport. The rate constant (k<sub>a</sub>pp) and C/C<sub>0</sub> ratio further validated this optimal composition, as UV–Vis spectroscopy demonstrated a substantial decrease in MB absorption intensity, signifying efficient dye removal. Electrochemical investigations using cyclic voltammetry, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy confirmed the superior energy storage properties of the Cr<sub>2</sub>O<sub>3</sub>/GNPs (1:9) nanocomposite, which exhibited the highest specific capacitance (462.2 F/g) and the lowest equivalent series resistance (6Ω). The synergistic 2D interfacial interactions between Cr<sub>2</sub>O<sub>3</sub> and GNPs facilitated rapid charge transport, efficient electron-hole separation, and enhanced ionic conductivity, making this nanocomposite a promising candidate for both environmental remediation (wastewater treatment) and energy storage (supercapacitor) applications.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 3","pages":"Article 100939"},"PeriodicalIF":6.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cr2O3-graphene nanocomposites for high-performance supercapacitors and methylene blue degradation: Synthesis and electrochemical analysis\",\"authors\":\"Muhammad Asim ,&nbsp;Javed Iqbal ,&nbsp;Bilal Islam ,&nbsp;Javaria Bashir ,&nbsp;Nabeel Maqsood ,&nbsp;Kateřina Skotnicová ,&nbsp;Ahmad Nawaz\",\"doi\":\"10.1016/j.jsamd.2025.100939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to enhance the photocatalytic performance of chromium oxide (Cr<sub>2</sub>O<sub>3</sub>) by incorporating graphene nanoplatelets (GNPs) to form Cr<sub>2</sub>O<sub>3</sub>/GNPs nanocomposites. Pristine Cr<sub>2</sub>O<sub>3</sub>, GNPs, and Cr<sub>2</sub>O<sub>3</sub>/GNPs nanocomposites were synthesized using a cost-effective ex-situ co-precipitation method at different stoichiometric ratios (7:3), (2:3), and (1:9). Structural characterization via X-ray diffraction and Raman spectroscopy confirmed that Cr<sub>2</sub>O<sub>3</sub> retained its rhombohedral phase across all compositions, with no evidence of phase transformation. A significant reduction in crystallite size by 50.0 %, 58.4 %, and 72.45 % was observed for the 7:3, 2:3, and 1:9 compositions, respectively, relative to pristine Cr<sub>2</sub>O<sub>3</sub>. Photocatalytic experiments revealed that the Cr<sub>2</sub>O<sub>3</sub>/GNPs (1:9) nanocomposite exhibited the highest methylene blue dye degradation efficiency, attributed to defect-induced charge separation and enhanced interfacial electron transport. The rate constant (k<sub>a</sub>pp) and C/C<sub>0</sub> ratio further validated this optimal composition, as UV–Vis spectroscopy demonstrated a substantial decrease in MB absorption intensity, signifying efficient dye removal. Electrochemical investigations using cyclic voltammetry, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy confirmed the superior energy storage properties of the Cr<sub>2</sub>O<sub>3</sub>/GNPs (1:9) nanocomposite, which exhibited the highest specific capacitance (462.2 F/g) and the lowest equivalent series resistance (6Ω). The synergistic 2D interfacial interactions between Cr<sub>2</sub>O<sub>3</sub> and GNPs facilitated rapid charge transport, efficient electron-hole separation, and enhanced ionic conductivity, making this nanocomposite a promising candidate for both environmental remediation (wastewater treatment) and energy storage (supercapacitor) applications.</div></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"10 3\",\"pages\":\"Article 100939\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217925000929\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217925000929","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过加入石墨烯纳米片(GNPs)形成Cr2O3/GNPs纳米复合材料来增强氧化铬(Cr2O3)的光催化性能。在不同的化学计量比(7:3)、(2:3)和(1:9)下,采用高性价比的非原位共沉淀法合成了纯净的Cr2O3、GNPs和Cr2O3/GNPs纳米复合材料。通过x射线衍射和拉曼光谱的结构表征证实,Cr2O3在所有成分中都保持了其菱形相,没有相变的证据。与原始Cr2O3相比,在7:3、2:3和1:9组分中,晶粒尺寸分别显著减小了50.0%、58.4%和72.45%。光催化实验表明,Cr2O3/GNPs(1:9)纳米复合材料具有最高的亚甲基蓝染料降解效率,这主要归因于缺陷诱导的电荷分离和界面电子传递的增强。速率常数(kapp)和C/C0比值进一步验证了这一最佳组合,紫外可见光谱显示MB吸收强度大幅下降,表明染料去除效率高。通过循环伏安法、恒流充放电(GCD)和电化学阻抗谱等电化学研究证实了Cr2O3/GNPs(1:9)纳米复合材料具有优异的储能性能,具有最高的比电容(462.2 F/g)和最低的等效串联电阻(6Ω)。Cr2O3和GNPs之间的协同二维界面相互作用促进了快速电荷传输、有效的电子空穴分离和增强的离子电导率,使这种纳米复合材料成为环境修复(废水处理)和储能(超级电容器)应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cr2O3-graphene nanocomposites for high-performance supercapacitors and methylene blue degradation: Synthesis and electrochemical analysis
This study aims to enhance the photocatalytic performance of chromium oxide (Cr2O3) by incorporating graphene nanoplatelets (GNPs) to form Cr2O3/GNPs nanocomposites. Pristine Cr2O3, GNPs, and Cr2O3/GNPs nanocomposites were synthesized using a cost-effective ex-situ co-precipitation method at different stoichiometric ratios (7:3), (2:3), and (1:9). Structural characterization via X-ray diffraction and Raman spectroscopy confirmed that Cr2O3 retained its rhombohedral phase across all compositions, with no evidence of phase transformation. A significant reduction in crystallite size by 50.0 %, 58.4 %, and 72.45 % was observed for the 7:3, 2:3, and 1:9 compositions, respectively, relative to pristine Cr2O3. Photocatalytic experiments revealed that the Cr2O3/GNPs (1:9) nanocomposite exhibited the highest methylene blue dye degradation efficiency, attributed to defect-induced charge separation and enhanced interfacial electron transport. The rate constant (kapp) and C/C0 ratio further validated this optimal composition, as UV–Vis spectroscopy demonstrated a substantial decrease in MB absorption intensity, signifying efficient dye removal. Electrochemical investigations using cyclic voltammetry, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy confirmed the superior energy storage properties of the Cr2O3/GNPs (1:9) nanocomposite, which exhibited the highest specific capacitance (462.2 F/g) and the lowest equivalent series resistance (6Ω). The synergistic 2D interfacial interactions between Cr2O3 and GNPs facilitated rapid charge transport, efficient electron-hole separation, and enhanced ionic conductivity, making this nanocomposite a promising candidate for both environmental remediation (wastewater treatment) and energy storage (supercapacitor) applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信