Sinn-wen Chen , Te-Wei Lin , Hsin-Chieh Huang , Cheng-Hsi Ho , Chuan Zhang , Jun Zhu
{"title":"Sn-In-Ni-Zn四元体系的相变温度","authors":"Sinn-wen Chen , Te-Wei Lin , Hsin-Chieh Huang , Cheng-Hsi Ho , Chuan Zhang , Jun Zhu","doi":"10.1016/j.calphad.2025.102854","DOIUrl":null,"url":null,"abstract":"<div><div>The Sn–In–Ni–Zn system is an important material system for electronic soldering. Various alloys, such as Sn–In, Sn–Ni, Sn–Zn, and Sn–In–Zn, are frequently used in electronic products. Unexpectedly, it was found that even for these important systems, there are only limited experimental measurements of the liquidus and invariant reaction temperatures. Additionally, there are significant differences between the experimental results and those calculated using the CALPHAD method with various available databases. To tackle these issues, Sn-rich alloys including Sn–Zn, Sn–In, Sn–Ni, Sn–In–Zn, Sn–Ni–Zn, Sn–In–Ni, and Sn–In–Ni–Zn were prepared. Their liquidus temperatures were determined experimentally through thermal analysis combined with holding-quenching experiments, while invariant reaction temperatures were measured using thermal analysis with an internal marker. The uncertainties in the measurements are 3 °C for the liquidus temperatures and 1 °C for the invariant reactions. Although high-quality thermal analysis can determine phase transformation temperatures with an accuracy of up to 1 °C, reliable determination of liquidus temperatures becomes quite challenging when the heat effect is not significant. This may explain why the literature data are inconsistent. These experimental results were subsequently used to refine CALPHAD-type modeling, and phase diagram calculations with better agreement were achieved.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"90 ","pages":"Article 102854"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transformation temperatures of the Sn–In–Ni–Zn quaternary system\",\"authors\":\"Sinn-wen Chen , Te-Wei Lin , Hsin-Chieh Huang , Cheng-Hsi Ho , Chuan Zhang , Jun Zhu\",\"doi\":\"10.1016/j.calphad.2025.102854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Sn–In–Ni–Zn system is an important material system for electronic soldering. Various alloys, such as Sn–In, Sn–Ni, Sn–Zn, and Sn–In–Zn, are frequently used in electronic products. Unexpectedly, it was found that even for these important systems, there are only limited experimental measurements of the liquidus and invariant reaction temperatures. Additionally, there are significant differences between the experimental results and those calculated using the CALPHAD method with various available databases. To tackle these issues, Sn-rich alloys including Sn–Zn, Sn–In, Sn–Ni, Sn–In–Zn, Sn–Ni–Zn, Sn–In–Ni, and Sn–In–Ni–Zn were prepared. Their liquidus temperatures were determined experimentally through thermal analysis combined with holding-quenching experiments, while invariant reaction temperatures were measured using thermal analysis with an internal marker. The uncertainties in the measurements are 3 °C for the liquidus temperatures and 1 °C for the invariant reactions. Although high-quality thermal analysis can determine phase transformation temperatures with an accuracy of up to 1 °C, reliable determination of liquidus temperatures becomes quite challenging when the heat effect is not significant. This may explain why the literature data are inconsistent. These experimental results were subsequently used to refine CALPHAD-type modeling, and phase diagram calculations with better agreement were achieved.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"90 \",\"pages\":\"Article 102854\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591625000574\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phase transformation temperatures of the Sn–In–Ni–Zn quaternary system
The Sn–In–Ni–Zn system is an important material system for electronic soldering. Various alloys, such as Sn–In, Sn–Ni, Sn–Zn, and Sn–In–Zn, are frequently used in electronic products. Unexpectedly, it was found that even for these important systems, there are only limited experimental measurements of the liquidus and invariant reaction temperatures. Additionally, there are significant differences between the experimental results and those calculated using the CALPHAD method with various available databases. To tackle these issues, Sn-rich alloys including Sn–Zn, Sn–In, Sn–Ni, Sn–In–Zn, Sn–Ni–Zn, Sn–In–Ni, and Sn–In–Ni–Zn were prepared. Their liquidus temperatures were determined experimentally through thermal analysis combined with holding-quenching experiments, while invariant reaction temperatures were measured using thermal analysis with an internal marker. The uncertainties in the measurements are 3 °C for the liquidus temperatures and 1 °C for the invariant reactions. Although high-quality thermal analysis can determine phase transformation temperatures with an accuracy of up to 1 °C, reliable determination of liquidus temperatures becomes quite challenging when the heat effect is not significant. This may explain why the literature data are inconsistent. These experimental results were subsequently used to refine CALPHAD-type modeling, and phase diagram calculations with better agreement were achieved.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.