吩噻嗪衍生物作为MAO-B和AChE双重抑制剂的计算见解、合成和细胞毒性评价

IF 2.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Neeru Dugar , Ashish Mohanrao Kanhed , Mohammed Afzal Azam , Srikanth Jupudi
{"title":"吩噻嗪衍生物作为MAO-B和AChE双重抑制剂的计算见解、合成和细胞毒性评价","authors":"Neeru Dugar ,&nbsp;Ashish Mohanrao Kanhed ,&nbsp;Mohammed Afzal Azam ,&nbsp;Srikanth Jupudi","doi":"10.1016/j.bpc.2025.107486","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease is a paragon of neurodegenerative diseases with prominent vagueness of cognitive impairment due to dysregulation of cholinergic and monoaminergic systems. This research employed molecular mechanics and quantum Mechanics to evaluate the plausible role of designed phenothiazine-derivatives as dual MAO-B and Acetylcholinesterase inhibitors. Synthesis and Cytotoxicity studies were performed for the eloquent molecules. <em>In-silico</em> studies revealed that halogens may enhance the binding affinity of compounds towards the target. NJ3b-d exhibited moderate inhibition in the SH-SY5Y cell lines compared with memantine (IC<sub>50</sub>35.88 μg/ml). 150 ns MD studies revealed the stability of NJ3c (IC<sub>50</sub>48.06 μg/ml) in the catalytic pockets of enzymes. DFT, pKa, BDE, Fukui-function, Epik-state, and membrane-permeability studies were performed to analyze the chemical stability and permeability. The results of QM displayed the compound NJ3c as BBB-permeable and it has thermal and kinetic stability. Our findings suggested that NJ3c can be considered a potential candidate for dual targeting MAO-B and Acetylcholinesterase.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"325 ","pages":"Article 107486"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights, synthesis and cytotoxicity evaluation of phenothiazine derivatives as a dual inhibitors targeting MAO-B and AChE\",\"authors\":\"Neeru Dugar ,&nbsp;Ashish Mohanrao Kanhed ,&nbsp;Mohammed Afzal Azam ,&nbsp;Srikanth Jupudi\",\"doi\":\"10.1016/j.bpc.2025.107486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer's disease is a paragon of neurodegenerative diseases with prominent vagueness of cognitive impairment due to dysregulation of cholinergic and monoaminergic systems. This research employed molecular mechanics and quantum Mechanics to evaluate the plausible role of designed phenothiazine-derivatives as dual MAO-B and Acetylcholinesterase inhibitors. Synthesis and Cytotoxicity studies were performed for the eloquent molecules. <em>In-silico</em> studies revealed that halogens may enhance the binding affinity of compounds towards the target. NJ3b-d exhibited moderate inhibition in the SH-SY5Y cell lines compared with memantine (IC<sub>50</sub>35.88 μg/ml). 150 ns MD studies revealed the stability of NJ3c (IC<sub>50</sub>48.06 μg/ml) in the catalytic pockets of enzymes. DFT, pKa, BDE, Fukui-function, Epik-state, and membrane-permeability studies were performed to analyze the chemical stability and permeability. The results of QM displayed the compound NJ3c as BBB-permeable and it has thermal and kinetic stability. Our findings suggested that NJ3c can be considered a potential candidate for dual targeting MAO-B and Acetylcholinesterase.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"325 \",\"pages\":\"Article 107486\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462225000985\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000985","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一种典型的神经退行性疾病,由于胆碱能和单胺能系统的失调而导致认知障碍的显著模糊。本研究采用分子力学和量子力学来评价所设计的吩噻嗪衍生物作为双MAO-B和乙酰胆碱酯酶抑制剂的合理作用。对这些雄辩分子进行了合成和细胞毒性研究。硅研究表明,卤素可以增强化合物对靶标的结合亲和力。nj3g -d对SH-SY5Y细胞系的抑制作用与美金刚比较(IC5035.88 μg/ml)。150 ns MD研究表明NJ3c (IC5048.06 μg/ml)在酶的催化口袋中具有稳定性。通过DFT、pKa、BDE、Fukui-function、Epik-state和膜通透性研究来分析其化学稳定性和通透性。QM结果表明,化合物NJ3c具有bbb渗透性,具有热稳定性和动力学稳定性。我们的研究结果表明,NJ3c可以被认为是双重靶向MAO-B和乙酰胆碱酯酶的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational insights, synthesis and cytotoxicity evaluation of phenothiazine derivatives as a dual inhibitors targeting MAO-B and AChE

Computational insights, synthesis and cytotoxicity evaluation of phenothiazine derivatives as a dual inhibitors targeting MAO-B and AChE
Alzheimer's disease is a paragon of neurodegenerative diseases with prominent vagueness of cognitive impairment due to dysregulation of cholinergic and monoaminergic systems. This research employed molecular mechanics and quantum Mechanics to evaluate the plausible role of designed phenothiazine-derivatives as dual MAO-B and Acetylcholinesterase inhibitors. Synthesis and Cytotoxicity studies were performed for the eloquent molecules. In-silico studies revealed that halogens may enhance the binding affinity of compounds towards the target. NJ3b-d exhibited moderate inhibition in the SH-SY5Y cell lines compared with memantine (IC5035.88 μg/ml). 150 ns MD studies revealed the stability of NJ3c (IC5048.06 μg/ml) in the catalytic pockets of enzymes. DFT, pKa, BDE, Fukui-function, Epik-state, and membrane-permeability studies were performed to analyze the chemical stability and permeability. The results of QM displayed the compound NJ3c as BBB-permeable and it has thermal and kinetic stability. Our findings suggested that NJ3c can be considered a potential candidate for dual targeting MAO-B and Acetylcholinesterase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信