基于变压器的动态运行质子交换膜燃料电池寿命间隔预测

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Haolong Li , Liang Xie , Dongqi Zhao , Ze Zhou , Liyan Zhang , Qihong Chen
{"title":"基于变压器的动态运行质子交换膜燃料电池寿命间隔预测","authors":"Haolong Li ,&nbsp;Liang Xie ,&nbsp;Dongqi Zhao ,&nbsp;Ze Zhou ,&nbsp;Liyan Zhang ,&nbsp;Qihong Chen","doi":"10.1016/j.engappai.2025.111444","DOIUrl":null,"url":null,"abstract":"<div><div>Remaining useful life is crucial for proton exchange membrane fuel cell (PEMFC). However, the complex decay mechanism makes existing methods incapable of quantifying the PEMFC decay uncertainty. To address above issues, a hybrid interval prediction method (HIPM) is proposed. First, multi-feature fusion based on incremental empirical modal decomposition (IEMD) decomposes and reorganizes the nonlinear features of the PEMFC into multiscale degradation components. Second, the temporal Transformer effectively addresses the challenge of modeling long-term dependencies in PEMFC degradation prediction. Third, a novel interval prediction method precisely quantize the uncertainty of PEMFC degradation. Experimental results show HIPM achieves a root mean square error of 0.0047 with limited training data while accurately quantifying PEMFC degradation uncertainty across all conditions.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111444"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer based lifetime interval prediction for dynamic operating proton exchange membrane fuel cells\",\"authors\":\"Haolong Li ,&nbsp;Liang Xie ,&nbsp;Dongqi Zhao ,&nbsp;Ze Zhou ,&nbsp;Liyan Zhang ,&nbsp;Qihong Chen\",\"doi\":\"10.1016/j.engappai.2025.111444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Remaining useful life is crucial for proton exchange membrane fuel cell (PEMFC). However, the complex decay mechanism makes existing methods incapable of quantifying the PEMFC decay uncertainty. To address above issues, a hybrid interval prediction method (HIPM) is proposed. First, multi-feature fusion based on incremental empirical modal decomposition (IEMD) decomposes and reorganizes the nonlinear features of the PEMFC into multiscale degradation components. Second, the temporal Transformer effectively addresses the challenge of modeling long-term dependencies in PEMFC degradation prediction. Third, a novel interval prediction method precisely quantize the uncertainty of PEMFC degradation. Experimental results show HIPM achieves a root mean square error of 0.0047 with limited training data while accurately quantifying PEMFC degradation uncertainty across all conditions.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"158 \",\"pages\":\"Article 111444\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625014460\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625014460","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

剩余使用寿命是质子交换膜燃料电池(PEMFC)的关键。然而,由于PEMFC的衰变机理复杂,现有的方法无法量化PEMFC的衰变不确定性。针对上述问题,提出了一种混合区间预测方法。首先,基于增量经验模态分解(IEMD)的多特征融合将PEMFC的非线性特征分解重组为多尺度退化分量;其次,时序变压器有效地解决了PEMFC退化预测中长期依赖关系建模的挑战。第三,提出了一种新的区间预测方法,精确量化了PEMFC退化的不确定性。实验结果表明,在有限的训练数据下,HIPM在准确量化所有条件下PEMFC降解不确定性的同时,实现了0.0047的均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer based lifetime interval prediction for dynamic operating proton exchange membrane fuel cells
Remaining useful life is crucial for proton exchange membrane fuel cell (PEMFC). However, the complex decay mechanism makes existing methods incapable of quantifying the PEMFC decay uncertainty. To address above issues, a hybrid interval prediction method (HIPM) is proposed. First, multi-feature fusion based on incremental empirical modal decomposition (IEMD) decomposes and reorganizes the nonlinear features of the PEMFC into multiscale degradation components. Second, the temporal Transformer effectively addresses the challenge of modeling long-term dependencies in PEMFC degradation prediction. Third, a novel interval prediction method precisely quantize the uncertainty of PEMFC degradation. Experimental results show HIPM achieves a root mean square error of 0.0047 with limited training data while accurately quantifying PEMFC degradation uncertainty across all conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信