对称群分类空间的3-骨架

Matthew B. Day , Trevor Nakamura
{"title":"对称群分类空间的3-骨架","authors":"Matthew B. Day ,&nbsp;Trevor Nakamura","doi":"10.1016/j.jaca.2025.100038","DOIUrl":null,"url":null,"abstract":"<div><div>We construct a 3-dimensional cell complex that is the 3-skeleton for an Eilenberg–MacLane classifying space for the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Our complex starts with the presentation for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> adjacent transpositions with squaring, commuting, and braid relations, and adds seven classes of 3-cells that fill in certain 2-spheres bounded by these relations. We use a rewriting system and a combinatorial method of K. Brown to prove the correctness of our construction. Our main application is a computation of the second cohomology of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in certain twisted coefficient modules; we use this computation in a companion paper to study splitting of extensions related to braid groups. As another application, we give a concrete description of the third homology of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with untwisted coefficients in <span><math><mi>Z</mi></math></span>.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"15 ","pages":"Article 100038"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3-skeleton for a classifying space for the symmetric group\",\"authors\":\"Matthew B. Day ,&nbsp;Trevor Nakamura\",\"doi\":\"10.1016/j.jaca.2025.100038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct a 3-dimensional cell complex that is the 3-skeleton for an Eilenberg–MacLane classifying space for the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Our complex starts with the presentation for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> adjacent transpositions with squaring, commuting, and braid relations, and adds seven classes of 3-cells that fill in certain 2-spheres bounded by these relations. We use a rewriting system and a combinatorial method of K. Brown to prove the correctness of our construction. Our main application is a computation of the second cohomology of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in certain twisted coefficient modules; we use this computation in a companion paper to study splitting of extensions related to braid groups. As another application, we give a concrete description of the third homology of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with untwisted coefficients in <span><math><mi>Z</mi></math></span>.</div></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"15 \",\"pages\":\"Article 100038\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827725000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了一个三维细胞复合体,它是对称群Sn的Eilenberg-MacLane分类空间的3-骨架。我们的复合体从Sn的n−1相邻转置的平方,交换和编织关系开始,并添加了7类3-细胞,这些3-细胞填充在以这些关系为界的特定2-球体中。我们用一个改写系统和K. Brown的组合方法来证明我们构造的正确性。我们的主要应用是计算某些扭曲系数模中Sn的二次上同调;我们在另一篇论文中使用这种计算方法来研究与辫状群相关的扩展的分裂。作为另一个应用,我们给出了Sn在Z中具有未扭系数的第三同调的具体描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 3-skeleton for a classifying space for the symmetric group
We construct a 3-dimensional cell complex that is the 3-skeleton for an Eilenberg–MacLane classifying space for the symmetric group Sn. Our complex starts with the presentation for Sn with n1 adjacent transpositions with squaring, commuting, and braid relations, and adds seven classes of 3-cells that fill in certain 2-spheres bounded by these relations. We use a rewriting system and a combinatorial method of K. Brown to prove the correctness of our construction. Our main application is a computation of the second cohomology of Sn in certain twisted coefficient modules; we use this computation in a companion paper to study splitting of extensions related to braid groups. As another application, we give a concrete description of the third homology of Sn with untwisted coefficients in Z.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信