利用SDGSAT-1微光成像仪数据检测中国城市群地区人类活动的研究

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Lu Zhang , Huadong Guo , Dong Liang , Zhuoran Lv , Zilu Li , Yaqi Geng , Xuting Liu , Mingyang Lv , Changyong Dou
{"title":"利用SDGSAT-1微光成像仪数据检测中国城市群地区人类活动的研究","authors":"Lu Zhang ,&nbsp;Huadong Guo ,&nbsp;Dong Liang ,&nbsp;Zhuoran Lv ,&nbsp;Zilu Li ,&nbsp;Yaqi Geng ,&nbsp;Xuting Liu ,&nbsp;Mingyang Lv ,&nbsp;Changyong Dou","doi":"10.1016/j.rse.2025.114886","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable Development Goal (SDG) 11 aims to make cities and human settlements inclusive, safe, resilient, and sustainable. Understanding urban agglomerations, as highly developed products of urbanization, is important for achieving SDG 11. The Sustainable Development Science Satellite (SDGSAT-1), launched in 2021, aims to characterize “human activity traces” at a fine scale to fill data gaps and address incomplete methods in the implementation of the United Nations 2030 Agenda for Sustainable Development. The satellite, with a 10 m glimmer imager, provides a new and valuable data source for research related to urban agglomerations. To better describe the degree of construction and development of urban agglomerations, we established two new indicators—the City Activity Index (<span><math><mi>CAI</mi></math></span>) and the Population Activity Index (<span><math><mi>PAI</mi></math></span>)—based on SDGSAT-1 glimmer imager data. Additionally, we proposed a novel method for extracting the strength of intercity connections using 10 m glimmer imager data to reflect the current status of city linkages. These methods were combined and applied in three urban agglomerations in China: Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The findings not only enhance our understanding of spatial patterns and resource flows within major Chinese urban agglomerations, but also provide actionable data support for urban planning, infrastructure development, and governance. The study fully demonstrates the advantages of SDGSAT-1 high-precision glimmer imager data in depicting urban development, and provides data support for achieving SDG 11.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114886"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on detection of human activity using SDGSAT-1 glimmer imager data over urban agglomerations in China\",\"authors\":\"Lu Zhang ,&nbsp;Huadong Guo ,&nbsp;Dong Liang ,&nbsp;Zhuoran Lv ,&nbsp;Zilu Li ,&nbsp;Yaqi Geng ,&nbsp;Xuting Liu ,&nbsp;Mingyang Lv ,&nbsp;Changyong Dou\",\"doi\":\"10.1016/j.rse.2025.114886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sustainable Development Goal (SDG) 11 aims to make cities and human settlements inclusive, safe, resilient, and sustainable. Understanding urban agglomerations, as highly developed products of urbanization, is important for achieving SDG 11. The Sustainable Development Science Satellite (SDGSAT-1), launched in 2021, aims to characterize “human activity traces” at a fine scale to fill data gaps and address incomplete methods in the implementation of the United Nations 2030 Agenda for Sustainable Development. The satellite, with a 10 m glimmer imager, provides a new and valuable data source for research related to urban agglomerations. To better describe the degree of construction and development of urban agglomerations, we established two new indicators—the City Activity Index (<span><math><mi>CAI</mi></math></span>) and the Population Activity Index (<span><math><mi>PAI</mi></math></span>)—based on SDGSAT-1 glimmer imager data. Additionally, we proposed a novel method for extracting the strength of intercity connections using 10 m glimmer imager data to reflect the current status of city linkages. These methods were combined and applied in three urban agglomerations in China: Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The findings not only enhance our understanding of spatial patterns and resource flows within major Chinese urban agglomerations, but also provide actionable data support for urban planning, infrastructure development, and governance. The study fully demonstrates the advantages of SDGSAT-1 high-precision glimmer imager data in depicting urban development, and provides data support for achieving SDG 11.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"328 \",\"pages\":\"Article 114886\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725002901\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725002901","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

可持续发展目标11旨在使城市和人类住区具有包容性、安全性、复原力和可持续性。了解城市群作为高度发达的城市化产物,对于实现可持续发展目标11至关重要。可持续发展科学卫星(SDGSAT-1)于2021年发射,旨在精确描述“人类活动痕迹”,以填补数据空白,解决执行联合国2030年可持续发展议程过程中方法不完善的问题。该卫星具有10米微光成像仪,为城市群研究提供了新的有价值的数据来源。为了更好地描述城市群的建设和发展程度,本文基于SDGSAT-1微光成像仪数据建立了城市活动指数(CAI)和人口活动指数(PAI)两个新的指标。此外,我们提出了一种利用10米微光成像仪数据提取城际连接强度的新方法,以反映城市连接的现状。这些方法在京津冀、长三角和粤港澳大湾区三个城市群中进行了组合和应用。研究结果不仅加深了我们对中国主要城市群空间格局和资源流动的理解,而且为城市规划、基础设施建设和治理提供了可操作的数据支持。研究充分展示了SDGSAT-1高精度微光成像仪数据在描绘城市发展方面的优势,为实现SDG 11提供数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on detection of human activity using SDGSAT-1 glimmer imager data over urban agglomerations in China
Sustainable Development Goal (SDG) 11 aims to make cities and human settlements inclusive, safe, resilient, and sustainable. Understanding urban agglomerations, as highly developed products of urbanization, is important for achieving SDG 11. The Sustainable Development Science Satellite (SDGSAT-1), launched in 2021, aims to characterize “human activity traces” at a fine scale to fill data gaps and address incomplete methods in the implementation of the United Nations 2030 Agenda for Sustainable Development. The satellite, with a 10 m glimmer imager, provides a new and valuable data source for research related to urban agglomerations. To better describe the degree of construction and development of urban agglomerations, we established two new indicators—the City Activity Index (CAI) and the Population Activity Index (PAI)—based on SDGSAT-1 glimmer imager data. Additionally, we proposed a novel method for extracting the strength of intercity connections using 10 m glimmer imager data to reflect the current status of city linkages. These methods were combined and applied in three urban agglomerations in China: Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The findings not only enhance our understanding of spatial patterns and resource flows within major Chinese urban agglomerations, but also provide actionable data support for urban planning, infrastructure development, and governance. The study fully demonstrates the advantages of SDGSAT-1 high-precision glimmer imager data in depicting urban development, and provides data support for achieving SDG 11.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信