天目一号全球土壤水分产品的原位和三重配置评价

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Qingyun Wang, Cuixian Lu, Yuxin Zheng, Zhuo Wang, Jiafeng Li, Yini Tan
{"title":"天目一号全球土壤水分产品的原位和三重配置评价","authors":"Qingyun Wang,&nbsp;Cuixian Lu,&nbsp;Yuxin Zheng,&nbsp;Zhuo Wang,&nbsp;Jiafeng Li,&nbsp;Yini Tan","doi":"10.1016/j.rse.2025.114892","DOIUrl":null,"url":null,"abstract":"<div><div>Global Navigation Satellite System-Reflectometry (GNSS-R), as a favorable technology to provide large-scale soil moisture estimates, contributes to studies in climatology, hydrology, and agriculture. The Tianmu-1 Meteorological Mission (TM-1), currently runs 23 satellites in orbit (including one experimental satellite) with multi-GNSS compatibility, achieve shorter revisit periods and higher data acquisition frequencies compared with single-satellite missions. The hourly TM-1 surface soil moisture (SSM) products, offer affluent information for global soil moisture monitoring. This study provides the first comprehensive characterization and performance evaluation of TM-1 SSM products based on in-situ measurements and products of Soil Moisture Active Passive (SMAP), European Space Agency Climate Change Initiative (ESA CCI), and Global Land Data Assimilation System (GLDAS). The TM-1 SSM demonstrates expected spatiotemporal patterns at both regional and global scales. The in-situ validation results reveal its landcover-dependent accuracy, with superior performance over bare soils (unbiased Root Mean Square Error, ubRMSE of about 0.02 m<sup>3</sup>/m<sup>3</sup>) compared to vegetated regions (ubRMSE of around 0.07 m<sup>3</sup>/m<sup>3</sup>). Furthermore, Extended Triple Collocation (ETC) assessments using (1) TM-1, active, and ground observations and (2) TM-1, model, and ground observations triplets are conducted. The ETC-derived results present that TM-1 SSM achieve global correlation coefficient of 0.75 and random error standard deviation of 0.035 m<sup>3</sup>/m<sup>3</sup>. Overall, this study demonstrates the reliable accuracy of TM-1 SSM product, and provides valuable insights for its refinement and potential applications.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114892"},"PeriodicalIF":11.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ and triple collocation-based evaluations of Tianmu-1 global soil moisture products\",\"authors\":\"Qingyun Wang,&nbsp;Cuixian Lu,&nbsp;Yuxin Zheng,&nbsp;Zhuo Wang,&nbsp;Jiafeng Li,&nbsp;Yini Tan\",\"doi\":\"10.1016/j.rse.2025.114892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global Navigation Satellite System-Reflectometry (GNSS-R), as a favorable technology to provide large-scale soil moisture estimates, contributes to studies in climatology, hydrology, and agriculture. The Tianmu-1 Meteorological Mission (TM-1), currently runs 23 satellites in orbit (including one experimental satellite) with multi-GNSS compatibility, achieve shorter revisit periods and higher data acquisition frequencies compared with single-satellite missions. The hourly TM-1 surface soil moisture (SSM) products, offer affluent information for global soil moisture monitoring. This study provides the first comprehensive characterization and performance evaluation of TM-1 SSM products based on in-situ measurements and products of Soil Moisture Active Passive (SMAP), European Space Agency Climate Change Initiative (ESA CCI), and Global Land Data Assimilation System (GLDAS). The TM-1 SSM demonstrates expected spatiotemporal patterns at both regional and global scales. The in-situ validation results reveal its landcover-dependent accuracy, with superior performance over bare soils (unbiased Root Mean Square Error, ubRMSE of about 0.02 m<sup>3</sup>/m<sup>3</sup>) compared to vegetated regions (ubRMSE of around 0.07 m<sup>3</sup>/m<sup>3</sup>). Furthermore, Extended Triple Collocation (ETC) assessments using (1) TM-1, active, and ground observations and (2) TM-1, model, and ground observations triplets are conducted. The ETC-derived results present that TM-1 SSM achieve global correlation coefficient of 0.75 and random error standard deviation of 0.035 m<sup>3</sup>/m<sup>3</sup>. Overall, this study demonstrates the reliable accuracy of TM-1 SSM product, and provides valuable insights for its refinement and potential applications.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"328 \",\"pages\":\"Article 114892\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725002962\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725002962","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球卫星导航系统-反射测量(GNSS-R)作为一种提供大尺度土壤湿度估算的有利技术,对气候学、水文学和农业研究有重要贡献。天目一号气象任务(TM-1)目前在轨运行23颗卫星(包括一颗实验卫星),具有多gnss兼容能力,与单星任务相比,实现了更短的重访周期和更高的数据采集频率。每小时TM-1表层土壤湿度(SSM)产品为全球土壤湿度监测提供了丰富的信息。本研究首次基于土壤水分主动被动(SMAP)、欧洲空间局气候变化倡议(ESA CCI)和全球土地数据同化系统(GLDAS)的原位测量和产品,对TM-1 SSM产品进行了全面的表征和性能评价。TM-1 SSM在区域和全球尺度上展示了预期的时空格局。原位验证结果表明,该方法具有与土地覆盖相关的精度,在裸地(无偏均方根误差,ubRMSE约为0.02 m3/m3)上的性能优于植被区域(ubRMSE约为0.07 m3/m3)。此外,还利用(1)TM-1、主动和地面观测数据以及(2)TM-1、模型和地面观测数据三元组进行了扩展三重配置(ETC)评估。etc导出的结果表明,TM-1 SSM的全局相关系数为0.75,随机误差标准差为0.035 m3/m3。总的来说,本研究证明了TM-1 SSM产品的可靠精度,并为其改进和潜在应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ and triple collocation-based evaluations of Tianmu-1 global soil moisture products
Global Navigation Satellite System-Reflectometry (GNSS-R), as a favorable technology to provide large-scale soil moisture estimates, contributes to studies in climatology, hydrology, and agriculture. The Tianmu-1 Meteorological Mission (TM-1), currently runs 23 satellites in orbit (including one experimental satellite) with multi-GNSS compatibility, achieve shorter revisit periods and higher data acquisition frequencies compared with single-satellite missions. The hourly TM-1 surface soil moisture (SSM) products, offer affluent information for global soil moisture monitoring. This study provides the first comprehensive characterization and performance evaluation of TM-1 SSM products based on in-situ measurements and products of Soil Moisture Active Passive (SMAP), European Space Agency Climate Change Initiative (ESA CCI), and Global Land Data Assimilation System (GLDAS). The TM-1 SSM demonstrates expected spatiotemporal patterns at both regional and global scales. The in-situ validation results reveal its landcover-dependent accuracy, with superior performance over bare soils (unbiased Root Mean Square Error, ubRMSE of about 0.02 m3/m3) compared to vegetated regions (ubRMSE of around 0.07 m3/m3). Furthermore, Extended Triple Collocation (ETC) assessments using (1) TM-1, active, and ground observations and (2) TM-1, model, and ground observations triplets are conducted. The ETC-derived results present that TM-1 SSM achieve global correlation coefficient of 0.75 and random error standard deviation of 0.035 m3/m3. Overall, this study demonstrates the reliable accuracy of TM-1 SSM product, and provides valuable insights for its refinement and potential applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信