Hye-Young Min , Jeong Yeon Sim , Jee Hwan Ahn , Nae-Won Kang , Hye-Jin Boo , Jina Kim , Na-Young Yu , Marta Bottacin , Jungmoo Huh , Choon-Sik Park , Jong-Sook Park , Suckchang Hong , Sungyong You , Dae-Duk Kim , Ho-Young Lee
{"title":"Gaylussacin,一种二苯乙烯糖苷,抑制小鼠慢性阻塞性肺疾病","authors":"Hye-Young Min , Jeong Yeon Sim , Jee Hwan Ahn , Nae-Won Kang , Hye-Jin Boo , Jina Kim , Na-Young Yu , Marta Bottacin , Jungmoo Huh , Choon-Sik Park , Jong-Sook Park , Suckchang Hong , Sungyong You , Dae-Duk Kim , Ho-Young Lee","doi":"10.1016/j.redox.2025.103744","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic obstructive pulmonary disease (COPD) is a major cause of human mortality worldwide and is closely associated with chronic inflammation triggered by environmental toxicants such as lead (Pb) and cadmium (Cd). However, the molecular mechanisms linking Pb/Cd exposure to COPD pathogenesis and effective therapeutic strategies remain poorly defined. In this study, we established a mouse model of environmentally induced COPD by exposing mice to Pb/Cd aerosols using a specialized nebulizer system. Pb/Cd exposure led to characteristic COPD-like pathological features, including alveolar damage, mucus hypersecretion, oxidative stress, and apoptosis. Transcriptome analysis of lung tissues revealed upregulation of pro-inflammatory cytokines, chemokines, and lipid metabolism–related genes, with macrophages–particularly those expressing MMP-12–identified as key contributors to pulmonary inflammation. Through a targeted stilbenoid compound screen, we identified gaylussacin as a potent suppressor of Pb/Cd-induced MMP-12 expression in macrophages. Mechanistically, gaylussacin suppressed expression of MMP-12 and inflammatory mediators via activation of SIRT1. In a porcine pancreatic elastase (PPE)-induced emphysema model, oral administration of gaylussacin significantly improved lung function, reduced apoptosis, ROS production, and inflammation. Pharmacokinetic analysis revealed limited oral bioavailability of gaylussacin but efficient conversion to its active metabolite, pinosylvic acid. Toxicological evaluations confirmed negligible toxicity in normal cells derived from various organs and no significant adverse effects in vivo. Collectively, these findings demonstrate that Pb/Cd inhalation promotes COPD pathogenesis through macrophage-driven inflammation mediated by MMP-12 and that gaylussacin mitigates these effects by enhancing SIRT1 activity. This study supports gaylussacin as a promising therapeutic candidate for the treatment of environmentally induced COPD.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"85 ","pages":"Article 103744"},"PeriodicalIF":11.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaylussacin, a stilbene glycoside, inhibits chronic obstructive pulmonary disease in mice\",\"authors\":\"Hye-Young Min , Jeong Yeon Sim , Jee Hwan Ahn , Nae-Won Kang , Hye-Jin Boo , Jina Kim , Na-Young Yu , Marta Bottacin , Jungmoo Huh , Choon-Sik Park , Jong-Sook Park , Suckchang Hong , Sungyong You , Dae-Duk Kim , Ho-Young Lee\",\"doi\":\"10.1016/j.redox.2025.103744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic obstructive pulmonary disease (COPD) is a major cause of human mortality worldwide and is closely associated with chronic inflammation triggered by environmental toxicants such as lead (Pb) and cadmium (Cd). However, the molecular mechanisms linking Pb/Cd exposure to COPD pathogenesis and effective therapeutic strategies remain poorly defined. In this study, we established a mouse model of environmentally induced COPD by exposing mice to Pb/Cd aerosols using a specialized nebulizer system. Pb/Cd exposure led to characteristic COPD-like pathological features, including alveolar damage, mucus hypersecretion, oxidative stress, and apoptosis. Transcriptome analysis of lung tissues revealed upregulation of pro-inflammatory cytokines, chemokines, and lipid metabolism–related genes, with macrophages–particularly those expressing MMP-12–identified as key contributors to pulmonary inflammation. Through a targeted stilbenoid compound screen, we identified gaylussacin as a potent suppressor of Pb/Cd-induced MMP-12 expression in macrophages. Mechanistically, gaylussacin suppressed expression of MMP-12 and inflammatory mediators via activation of SIRT1. In a porcine pancreatic elastase (PPE)-induced emphysema model, oral administration of gaylussacin significantly improved lung function, reduced apoptosis, ROS production, and inflammation. Pharmacokinetic analysis revealed limited oral bioavailability of gaylussacin but efficient conversion to its active metabolite, pinosylvic acid. Toxicological evaluations confirmed negligible toxicity in normal cells derived from various organs and no significant adverse effects in vivo. Collectively, these findings demonstrate that Pb/Cd inhalation promotes COPD pathogenesis through macrophage-driven inflammation mediated by MMP-12 and that gaylussacin mitigates these effects by enhancing SIRT1 activity. This study supports gaylussacin as a promising therapeutic candidate for the treatment of environmentally induced COPD.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"85 \",\"pages\":\"Article 103744\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725002575\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725002575","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gaylussacin, a stilbene glycoside, inhibits chronic obstructive pulmonary disease in mice
Chronic obstructive pulmonary disease (COPD) is a major cause of human mortality worldwide and is closely associated with chronic inflammation triggered by environmental toxicants such as lead (Pb) and cadmium (Cd). However, the molecular mechanisms linking Pb/Cd exposure to COPD pathogenesis and effective therapeutic strategies remain poorly defined. In this study, we established a mouse model of environmentally induced COPD by exposing mice to Pb/Cd aerosols using a specialized nebulizer system. Pb/Cd exposure led to characteristic COPD-like pathological features, including alveolar damage, mucus hypersecretion, oxidative stress, and apoptosis. Transcriptome analysis of lung tissues revealed upregulation of pro-inflammatory cytokines, chemokines, and lipid metabolism–related genes, with macrophages–particularly those expressing MMP-12–identified as key contributors to pulmonary inflammation. Through a targeted stilbenoid compound screen, we identified gaylussacin as a potent suppressor of Pb/Cd-induced MMP-12 expression in macrophages. Mechanistically, gaylussacin suppressed expression of MMP-12 and inflammatory mediators via activation of SIRT1. In a porcine pancreatic elastase (PPE)-induced emphysema model, oral administration of gaylussacin significantly improved lung function, reduced apoptosis, ROS production, and inflammation. Pharmacokinetic analysis revealed limited oral bioavailability of gaylussacin but efficient conversion to its active metabolite, pinosylvic acid. Toxicological evaluations confirmed negligible toxicity in normal cells derived from various organs and no significant adverse effects in vivo. Collectively, these findings demonstrate that Pb/Cd inhalation promotes COPD pathogenesis through macrophage-driven inflammation mediated by MMP-12 and that gaylussacin mitigates these effects by enhancing SIRT1 activity. This study supports gaylussacin as a promising therapeutic candidate for the treatment of environmentally induced COPD.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.