预测招聘延迟:用于预测难以填补的在线职位空缺的可解释机器学习

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Wouter Dossche, Sarah Vansteenkiste, Bart Baesens, Wilfried Lemahieu
{"title":"预测招聘延迟:用于预测难以填补的在线职位空缺的可解释机器学习","authors":"Wouter Dossche, Sarah Vansteenkiste, Bart Baesens, Wilfried Lemahieu","doi":"10.1016/j.ejor.2025.06.027","DOIUrl":null,"url":null,"abstract":"Online job vacancy (OJV) platforms have transformed the labor market by enabling employers to advertise jobs to a wide audience. Particularly in tight labor markets, quickly identifying vacancies likely to suffer prolonged durations is crucial. This study utilizes data from the Flemish public employment service's OJV platform to examine the effectiveness of machine learning in predicting hard-to-fill vacancies. We achieve notable predictive performance with XGBoost in forecasting recruitment delays and demonstrate the importance of capturing non-linear patterns in OJV data. SHAP (SHapley Additive exPlanations) values reveal that the textual content of vacancies and latent company characteristics are key predictors of hiring delays. Counterfactual-SHAP insights provide practical guidance for refining recruitment strategies, enhancing labor market forecasts, and informing targeted policies.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"106 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticipating Delays in Recruitment: Explainable Machine Learning for the Prediction of Hard-to-Fill Online Job Vacancies\",\"authors\":\"Wouter Dossche, Sarah Vansteenkiste, Bart Baesens, Wilfried Lemahieu\",\"doi\":\"10.1016/j.ejor.2025.06.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online job vacancy (OJV) platforms have transformed the labor market by enabling employers to advertise jobs to a wide audience. Particularly in tight labor markets, quickly identifying vacancies likely to suffer prolonged durations is crucial. This study utilizes data from the Flemish public employment service's OJV platform to examine the effectiveness of machine learning in predicting hard-to-fill vacancies. We achieve notable predictive performance with XGBoost in forecasting recruitment delays and demonstrate the importance of capturing non-linear patterns in OJV data. SHAP (SHapley Additive exPlanations) values reveal that the textual content of vacancies and latent company characteristics are key predictors of hiring delays. Counterfactual-SHAP insights provide practical guidance for refining recruitment strategies, enhancing labor market forecasts, and informing targeted policies.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.06.027\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.06.027","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在线职位空缺(OJV)平台使雇主能够向广泛的受众发布招聘广告,从而改变了劳动力市场。特别是在劳动力市场紧张的情况下,迅速确定可能长期存在的职位空缺至关重要。本研究利用佛兰德公共就业服务OJV平台的数据来检验机器学习在预测难以填补的职位空缺方面的有效性。我们使用XGBoost在预测招聘延迟方面取得了显著的预测性能,并证明了在OJV数据中捕获非线性模式的重要性。SHapley加性解释(SHapley Additive explanation)值揭示了空缺职位的文本内容和潜在的公司特征是招聘延迟的关键预测因素。反事实的shap见解为完善招聘策略、加强劳动力市场预测和制定有针对性的政策提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anticipating Delays in Recruitment: Explainable Machine Learning for the Prediction of Hard-to-Fill Online Job Vacancies
Online job vacancy (OJV) platforms have transformed the labor market by enabling employers to advertise jobs to a wide audience. Particularly in tight labor markets, quickly identifying vacancies likely to suffer prolonged durations is crucial. This study utilizes data from the Flemish public employment service's OJV platform to examine the effectiveness of machine learning in predicting hard-to-fill vacancies. We achieve notable predictive performance with XGBoost in forecasting recruitment delays and demonstrate the importance of capturing non-linear patterns in OJV data. SHAP (SHapley Additive exPlanations) values reveal that the textual content of vacancies and latent company characteristics are key predictors of hiring delays. Counterfactual-SHAP insights provide practical guidance for refining recruitment strategies, enhancing labor market forecasts, and informing targeted policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信