机械敏感粘附G蛋白偶联受体133 (GPR133/ADGRD1)促进骨形成

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Juliane Lehmann, Hui Lin, Zihao Zhang, Maren Wiermann, Albert M. Ricken, Franziska Brinkmann, Jana Brendler, Christian Ullmann, Luisa Bayer, Sandra Berndt, Anja Penk, Nadine Winkler, Franz Wolfgang Hirsch, Thomas Fuhs, Josef Käs, Peng Xiao, Torsten Schöneberg, Martina Rauner, Jin-Peng Sun, Ines Liebscher
{"title":"机械敏感粘附G蛋白偶联受体133 (GPR133/ADGRD1)促进骨形成","authors":"Juliane Lehmann, Hui Lin, Zihao Zhang, Maren Wiermann, Albert M. Ricken, Franziska Brinkmann, Jana Brendler, Christian Ullmann, Luisa Bayer, Sandra Berndt, Anja Penk, Nadine Winkler, Franz Wolfgang Hirsch, Thomas Fuhs, Josef Käs, Peng Xiao, Torsten Schöneberg, Martina Rauner, Jin-Peng Sun, Ines Liebscher","doi":"10.1038/s41392-025-02291-y","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of <i>Gpr133/Adgrd1</i> in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae — features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"26 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation\",\"authors\":\"Juliane Lehmann, Hui Lin, Zihao Zhang, Maren Wiermann, Albert M. Ricken, Franziska Brinkmann, Jana Brendler, Christian Ullmann, Luisa Bayer, Sandra Berndt, Anja Penk, Nadine Winkler, Franz Wolfgang Hirsch, Thomas Fuhs, Josef Käs, Peng Xiao, Torsten Schöneberg, Martina Rauner, Jin-Peng Sun, Ines Liebscher\",\"doi\":\"10.1038/s41392-025-02291-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of <i>Gpr133/Adgrd1</i> in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae — features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.</p>\",\"PeriodicalId\":21766,\"journal\":{\"name\":\"Signal Transduction and Targeted Therapy\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":40.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Transduction and Targeted Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41392-025-02291-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02291-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症是老龄化社会日益加重的健康和社会经济负担。目前的治疗方案往往具有潜在的严重副作用或缺乏长期疗效,因此迫切需要更有效的治疗方法。识别新的药物靶点需要对它们的生理作用有透彻的了解。人类全基因组关联研究表明,粘附G蛋白偶联受体133 (GPR133/ADGRD1)的基因变异与骨矿物质密度和身高的变化有关。在本研究中,我们探讨了GPR133/ADGRD1对成骨细胞分化和功能的影响。小鼠Gpr133/Adgrd1的成骨细胞特异性敲除导致皮质骨量减少,股骨和椎骨小梁形成,这是骨质疏松症的特征。受体缺陷小鼠的这种骨质减少表型是由成骨细胞功能受损引起的,而成骨细胞功能受损反过来又促进破骨细胞活性增加。在分子水平上,GPR133/ADGRD1通过与其内源性配体、蛋白酪氨酸激酶7 (PTK7)和机械力相互作用的联合激活机制调节成骨细胞的功能和分化。这在体外通过拉伸试验和体内通过机械加载实验证明。进一步的体外分析表明,GPR133/ adgrd1介导的成骨细胞分化是由camp依赖性的β-catenin信号通路激活驱动的。受体特异性配体AP-970/43482503 (AP503)激活GPR133/ADGRD1可增强体外和体内成骨细胞功能和分化,显著缓解小鼠卵巢切除模型中的骨质疏松症。这些发现将GPR133/ADGRD1定位为骨质疏松症和其他以骨量减少为特征的疾病的有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation

The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation

Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of Gpr133/Adgrd1 in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae — features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信