Otger Crehuet, Andrea Vázquez, Francisco J. Basterretxea, Pablo Pinacho and Emilio J. Cocinero
{"title":"皮卡瑞丁在气相氢键辅助下的构象选择","authors":"Otger Crehuet, Andrea Vázquez, Francisco J. Basterretxea, Pablo Pinacho and Emilio J. Cocinero","doi":"10.1039/D5CP02108A","DOIUrl":null,"url":null,"abstract":"<p >Understanding the intrinsic shape of bioactive molecules such as picaridin is key to elucidating their mode of action. In this work, we characterize the gas-phase conformational landscape of picaridin, a flexible chiral repellent with two stereocenters. Broadband rotational spectroscopy combined with quantum chemical calculations reveals a single dominant conformer per enantiomeric pair, both stabilized by internal O–H⋯O hydrogen bonds. These intramolecular interactions induce conformational locking, constraining the hydroxyethyl chain and favouring a compact geometry. Non-covalent interaction analysis further confirms that dispersion and hydrogen bonding play a central role in conformational selection under isolated conditions.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 28","pages":" 15222-15227"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-bond-assisted conformational selection of picaridin in the gas phase†\",\"authors\":\"Otger Crehuet, Andrea Vázquez, Francisco J. Basterretxea, Pablo Pinacho and Emilio J. Cocinero\",\"doi\":\"10.1039/D5CP02108A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the intrinsic shape of bioactive molecules such as picaridin is key to elucidating their mode of action. In this work, we characterize the gas-phase conformational landscape of picaridin, a flexible chiral repellent with two stereocenters. Broadband rotational spectroscopy combined with quantum chemical calculations reveals a single dominant conformer per enantiomeric pair, both stabilized by internal O–H⋯O hydrogen bonds. These intramolecular interactions induce conformational locking, constraining the hydroxyethyl chain and favouring a compact geometry. Non-covalent interaction analysis further confirms that dispersion and hydrogen bonding play a central role in conformational selection under isolated conditions.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 28\",\"pages\":\" 15222-15227\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02108a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02108a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrogen-bond-assisted conformational selection of picaridin in the gas phase†
Understanding the intrinsic shape of bioactive molecules such as picaridin is key to elucidating their mode of action. In this work, we characterize the gas-phase conformational landscape of picaridin, a flexible chiral repellent with two stereocenters. Broadband rotational spectroscopy combined with quantum chemical calculations reveals a single dominant conformer per enantiomeric pair, both stabilized by internal O–H⋯O hydrogen bonds. These intramolecular interactions induce conformational locking, constraining the hydroxyethyl chain and favouring a compact geometry. Non-covalent interaction analysis further confirms that dispersion and hydrogen bonding play a central role in conformational selection under isolated conditions.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.