Marie-Therese Bammert, Ines Kollak, Jan Hoffmann, Eva Peter, Meshal Ansari, Holger Schlüter, Jun Li, Alexandre R. Campos, Coralie Viollet, Florian Gantner, Muriel Lizé, Matthew J. Thomas, Huy Q. Le
{"title":"成纤维细胞-上皮串扰在急性和慢性肺损伤中的双重作用","authors":"Marie-Therese Bammert, Ines Kollak, Jan Hoffmann, Eva Peter, Meshal Ansari, Holger Schlüter, Jun Li, Alexandre R. Campos, Coralie Viollet, Florian Gantner, Muriel Lizé, Matthew J. Thomas, Huy Q. Le","doi":"10.1016/j.jbc.2025.110408","DOIUrl":null,"url":null,"abstract":"Dysfunctional interactions between fibroblasts and epithelial cells contribute to the progression of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In this study, we developed an air-liquid interface coculture model of human-derived small airway epithelial cells and lung fibroblasts to investigate intercellular dynamics during disease progression. Our findings showed that chronic epithelial damage initiates a bidirectional fibrotic cascade between the epithelium and lung fibroblasts, exacerbating epithelial injury and the release of pro-fibrotic mediators. Conversely, our transcriptomic and proteomic analyses revealed that, in the context of acute epithelial injury, a protective signaling environment emerges that mitigates further damage. By delineating secreted regulators involved in these beneficial responses, we identified pentraxin 3 (PTX3) as a leading antifibrotic candidate. Supplementation with PTX3 in chronically injured epithelial cells alleviated the pro-fibrotic phenotype and preserved epithelial barrier integrity through modulation of the AKT/claudin-2 axis. These insights highlight key differences of acute and chronic lung injuries and underscore the importance of the complex interplay between epithelial cells and fibroblasts in lung injury and repair.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual roles of fibroblast-epithelial crosstalk in acute and chronic lung injury\",\"authors\":\"Marie-Therese Bammert, Ines Kollak, Jan Hoffmann, Eva Peter, Meshal Ansari, Holger Schlüter, Jun Li, Alexandre R. Campos, Coralie Viollet, Florian Gantner, Muriel Lizé, Matthew J. Thomas, Huy Q. Le\",\"doi\":\"10.1016/j.jbc.2025.110408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dysfunctional interactions between fibroblasts and epithelial cells contribute to the progression of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In this study, we developed an air-liquid interface coculture model of human-derived small airway epithelial cells and lung fibroblasts to investigate intercellular dynamics during disease progression. Our findings showed that chronic epithelial damage initiates a bidirectional fibrotic cascade between the epithelium and lung fibroblasts, exacerbating epithelial injury and the release of pro-fibrotic mediators. Conversely, our transcriptomic and proteomic analyses revealed that, in the context of acute epithelial injury, a protective signaling environment emerges that mitigates further damage. By delineating secreted regulators involved in these beneficial responses, we identified pentraxin 3 (PTX3) as a leading antifibrotic candidate. Supplementation with PTX3 in chronically injured epithelial cells alleviated the pro-fibrotic phenotype and preserved epithelial barrier integrity through modulation of the AKT/claudin-2 axis. These insights highlight key differences of acute and chronic lung injuries and underscore the importance of the complex interplay between epithelial cells and fibroblasts in lung injury and repair.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110408\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110408","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dual roles of fibroblast-epithelial crosstalk in acute and chronic lung injury
Dysfunctional interactions between fibroblasts and epithelial cells contribute to the progression of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In this study, we developed an air-liquid interface coculture model of human-derived small airway epithelial cells and lung fibroblasts to investigate intercellular dynamics during disease progression. Our findings showed that chronic epithelial damage initiates a bidirectional fibrotic cascade between the epithelium and lung fibroblasts, exacerbating epithelial injury and the release of pro-fibrotic mediators. Conversely, our transcriptomic and proteomic analyses revealed that, in the context of acute epithelial injury, a protective signaling environment emerges that mitigates further damage. By delineating secreted regulators involved in these beneficial responses, we identified pentraxin 3 (PTX3) as a leading antifibrotic candidate. Supplementation with PTX3 in chronically injured epithelial cells alleviated the pro-fibrotic phenotype and preserved epithelial barrier integrity through modulation of the AKT/claudin-2 axis. These insights highlight key differences of acute and chronic lung injuries and underscore the importance of the complex interplay between epithelial cells and fibroblasts in lung injury and repair.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.