基于第一性原理的液态镓核量子效应热力学性质的原子模拟

Hongyu Wu, Wenliang Shi, Ri He, Guoyong Shi, Chunxiao Zhang, Jinyun Liu, Zhicheng Zhong, Runwei Li
{"title":"基于第一性原理的液态镓核量子效应热力学性质的原子模拟","authors":"Hongyu Wu,&nbsp;Wenliang Shi,&nbsp;Ri He,&nbsp;Guoyong Shi,&nbsp;Chunxiao Zhang,&nbsp;Jinyun Liu,&nbsp;Zhicheng Zhong,&nbsp;Runwei Li","doi":"10.1002/mgea.70016","DOIUrl":null,"url":null,"abstract":"<p>Determining thermodynamic properties in disordered systems remains a formidable challenge because of the difficulty in incorporating nuclear quantum effects into large-scale and nonperiodic atomic simulations. In this study, we employ a machine learning deep potential model in conjunction with the quantum thermal bath method, enabling machine learning molecular dynamics to simulate thermodynamic quantities of liquid materials with satisfactory accuracy without significantly increasing computational costs. Using this approach, we accurately calculate the variations in various thermodynamic quantities of liquid metal gallium at temperatures ranging from zero to room temperature. The calculated thermodynamic properties accurately capture the solid-liquid phase transition behavior of gallium, whereas classical molecular dynamics methods fail to reproduce realistic results. Through this approach, we offer a potential method for accurately calculating the thermodynamic properties of liquids and other disordered systems.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70016","citationCount":"0","resultStr":"{\"title\":\"Atomistic simulations of thermodynamic properties with nuclear quantum effects of liquid gallium from first principles\",\"authors\":\"Hongyu Wu,&nbsp;Wenliang Shi,&nbsp;Ri He,&nbsp;Guoyong Shi,&nbsp;Chunxiao Zhang,&nbsp;Jinyun Liu,&nbsp;Zhicheng Zhong,&nbsp;Runwei Li\",\"doi\":\"10.1002/mgea.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determining thermodynamic properties in disordered systems remains a formidable challenge because of the difficulty in incorporating nuclear quantum effects into large-scale and nonperiodic atomic simulations. In this study, we employ a machine learning deep potential model in conjunction with the quantum thermal bath method, enabling machine learning molecular dynamics to simulate thermodynamic quantities of liquid materials with satisfactory accuracy without significantly increasing computational costs. Using this approach, we accurately calculate the variations in various thermodynamic quantities of liquid metal gallium at temperatures ranging from zero to room temperature. The calculated thermodynamic properties accurately capture the solid-liquid phase transition behavior of gallium, whereas classical molecular dynamics methods fail to reproduce realistic results. Through this approach, we offer a potential method for accurately calculating the thermodynamic properties of liquids and other disordered systems.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定无序系统的热力学性质仍然是一个艰巨的挑战,因为很难将核量子效应纳入大规模和非周期原子模拟中。在本研究中,我们将机器学习深势模型与量子热浴方法相结合,使机器学习分子动力学能够在不显著增加计算成本的情况下以令人满意的精度模拟液体材料的热力学量。利用这种方法,我们准确地计算了液态金属镓在从零到室温的温度范围内各种热力学量的变化。计算的热力学性质准确地捕捉了镓的固液相变行为,而经典的分子动力学方法无法再现现实结果。通过这种方法,我们为精确计算液体和其他无序系统的热力学性质提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomistic simulations of thermodynamic properties with nuclear quantum effects of liquid gallium from first principles

Atomistic simulations of thermodynamic properties with nuclear quantum effects of liquid gallium from first principles

Determining thermodynamic properties in disordered systems remains a formidable challenge because of the difficulty in incorporating nuclear quantum effects into large-scale and nonperiodic atomic simulations. In this study, we employ a machine learning deep potential model in conjunction with the quantum thermal bath method, enabling machine learning molecular dynamics to simulate thermodynamic quantities of liquid materials with satisfactory accuracy without significantly increasing computational costs. Using this approach, we accurately calculate the variations in various thermodynamic quantities of liquid metal gallium at temperatures ranging from zero to room temperature. The calculated thermodynamic properties accurately capture the solid-liquid phase transition behavior of gallium, whereas classical molecular dynamics methods fail to reproduce realistic results. Through this approach, we offer a potential method for accurately calculating the thermodynamic properties of liquids and other disordered systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信