反铁电PbZrO3的畴和开关动力学:机器学习分子动力学模拟

Yubai Shi, Ruoyu Wang, Zhicheng Zhong, Yao Wu, Shi Liu, Liang Si, Ri He
{"title":"反铁电PbZrO3的畴和开关动力学:机器学习分子动力学模拟","authors":"Yubai Shi,&nbsp;Ruoyu Wang,&nbsp;Zhicheng Zhong,&nbsp;Yao Wu,&nbsp;Shi Liu,&nbsp;Liang Si,&nbsp;Ri He","doi":"10.1002/mgea.70012","DOIUrl":null,"url":null,"abstract":"<p>Antiferroelectric (AFE) materials have received great attention because of their potential applications in the energy sector. Nevertheless, the properties of AFE materials have not been explored for a long time, especially the atomic-scale understanding of AFE domain walls. Here, using first-principles-based machine learning potentials, we identify the atomic structures, energies, and dynamic properties of the domain walls for AFE lead zirconate. It is found that the domain wall can reduce the critical antiferroelectric-ferroelectric transition field. During the electric field-driven polarization switching process, the domain wall is immobile. Importantly, we observe that a distinct domain structure spontaneously forms in bulk lead zirconate upon annealing at 300 K. The domain structure exhibits an alternating array of clockwise–anticlockwise vortexes along radial with continuous polarization rotation. This anomalous AFE vortex is derived from the energy degeneracy in four possible orientations of the polarization order, which can enhance the dielectric response in the terahertz. The current results give an implication for the emergence of AFE vortex in AFE materials as well as ferroelectric materials.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70012","citationCount":"0","resultStr":"{\"title\":\"Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation\",\"authors\":\"Yubai Shi,&nbsp;Ruoyu Wang,&nbsp;Zhicheng Zhong,&nbsp;Yao Wu,&nbsp;Shi Liu,&nbsp;Liang Si,&nbsp;Ri He\",\"doi\":\"10.1002/mgea.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antiferroelectric (AFE) materials have received great attention because of their potential applications in the energy sector. Nevertheless, the properties of AFE materials have not been explored for a long time, especially the atomic-scale understanding of AFE domain walls. Here, using first-principles-based machine learning potentials, we identify the atomic structures, energies, and dynamic properties of the domain walls for AFE lead zirconate. It is found that the domain wall can reduce the critical antiferroelectric-ferroelectric transition field. During the electric field-driven polarization switching process, the domain wall is immobile. Importantly, we observe that a distinct domain structure spontaneously forms in bulk lead zirconate upon annealing at 300 K. The domain structure exhibits an alternating array of clockwise–anticlockwise vortexes along radial with continuous polarization rotation. This anomalous AFE vortex is derived from the energy degeneracy in four possible orientations of the polarization order, which can enhance the dielectric response in the terahertz. The current results give an implication for the emergence of AFE vortex in AFE materials as well as ferroelectric materials.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反铁电(AFE)材料因其在能源领域的潜在应用而受到广泛关注。然而,长期以来,人们对AFE材料的性质,特别是对AFE畴壁的原子尺度的理解并没有深入研究。在这里,利用基于第一性原理的机器学习电位,我们确定了AFE锆酸铅畴壁的原子结构、能量和动态性质。发现畴壁可以降低临界反铁电-铁电跃迁场。在电场驱动的极化开关过程中,畴壁是不动的。重要的是,我们观察到在300 K退火时,块状锆酸铅自发形成了独特的畴结构。畴结构表现为沿径向顺时针-逆时针交替排列的涡阵,具有连续的极化旋转。这种反常的AFE涡旋是由四种可能的极化顺序方向上的能量简并产生的,它可以增强太赫兹的介电响应。目前的研究结果对AFE材料以及铁电材料中AFE涡旋的出现提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation

Domain and switching dynamics in antiferroelectric PbZrO3: Machine learning molecular dynamics simulation

Antiferroelectric (AFE) materials have received great attention because of their potential applications in the energy sector. Nevertheless, the properties of AFE materials have not been explored for a long time, especially the atomic-scale understanding of AFE domain walls. Here, using first-principles-based machine learning potentials, we identify the atomic structures, energies, and dynamic properties of the domain walls for AFE lead zirconate. It is found that the domain wall can reduce the critical antiferroelectric-ferroelectric transition field. During the electric field-driven polarization switching process, the domain wall is immobile. Importantly, we observe that a distinct domain structure spontaneously forms in bulk lead zirconate upon annealing at 300 K. The domain structure exhibits an alternating array of clockwise–anticlockwise vortexes along radial with continuous polarization rotation. This anomalous AFE vortex is derived from the energy degeneracy in four possible orientations of the polarization order, which can enhance the dielectric response in the terahertz. The current results give an implication for the emergence of AFE vortex in AFE materials as well as ferroelectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信