Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si
{"title":"基于深度学习原子间势的NbO 2 ${\\text{NbO}}_{2}$的有限温度性质","authors":"Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si","doi":"10.1002/mgea.70011","DOIUrl":null,"url":null,"abstract":"<p>Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>. Treating the DFT results of the low- and intermediate-temperature phases of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math> as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (>14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <msub>\n <mn>4</mn>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>a</mi>\n </mrow>\n <annotation> $I{4}_{1}/a$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation> $\\alpha $</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>) and <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <msub>\n <mn>4</mn>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> $I{4}_{1}$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation> $\\beta $</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <msub>\n <mn>4</mn>\n <mn>2</mn>\n </msub>\n <mo>/</mo>\n <mi>m</mi>\n <mi>n</mi>\n <mi>m</mi>\n </mrow>\n <annotation> $P{4}_{2}/mnm$</annotation>\n </semantics></math> phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math> and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70011","citationCount":"0","resultStr":"{\"title\":\"Finite-temperature properties of \\n \\n \\n \\n NbO\\n 2\\n \\n \\n ${\\\\text{NbO}}_{2}$\\n from a deep-learning interatomic potential\",\"authors\":\"Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si\",\"doi\":\"10.1002/mgea.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>NbO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{NbO}}_{2}$</annotation>\\n </semantics></math>. Treating the DFT results of the low- and intermediate-temperature phases of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>NbO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{NbO}}_{2}$</annotation>\\n </semantics></math> as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (>14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <msub>\\n <mn>4</mn>\\n <mn>1</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>a</mi>\\n </mrow>\\n <annotation> $I{4}_{1}/a$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation> $\\\\alpha $</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>NbO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{NbO}}_{2}$</annotation>\\n </semantics></math>) and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <msub>\\n <mn>4</mn>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> $I{4}_{1}$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation> $\\\\beta $</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>NbO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{NbO}}_{2}$</annotation>\\n </semantics></math>) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <msub>\\n <mn>4</mn>\\n <mn>2</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>m</mi>\\n <mi>n</mi>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $P{4}_{2}/mnm$</annotation>\\n </semantics></math> phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>NbO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{NbO}}_{2}$</annotation>\\n </semantics></math> and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用基于第一性原理的机器学习势,进行了分子动力学(MD)模拟,研究了nbo2 ${\text{NbO}}_{2}$相变的微观机制。将NbO 2 ${\text{NbO}}_{2}$低温和中温相的DFT结果作为深度学习模型中的训练数据,我们成功构建了一个能够准确再现从低温(压力)到高温(压力)相变的原子间势。值得注意的是,我们的模拟预测了高压单斜相(&gt;14 GPa),而没有在训练集中处理其信息,与先前的实验结果一致,证明了构建的原子间势的可靠性。我们发现nb二聚体是控制相变的关键结构基序。在低温下,铌二聚体的位移驱动了i41 / a $I{4}_{1}/a$ (α $\alpha $ -)之间的转变nbo2 ${\text{NbO}}_{2}$)和i41 $I{4}_{1}$ (β $\beta $ -NbO 2 ${\text{NbO}}_{2}$)相,而在高温下,Nb离子倾向于均匀分布,Nb二聚体的消失导致高对称性p4.2 / m n m $P{4}_{2}/mnm$相的稳定。这些发现阐明了NbO 2 ${\text{NbO}}_{2}$结构性质的结构和动力学机制,并强调了将DFT和深势MD方法结合起来研究过渡金属氧化物中复杂相变的实用性。
Finite-temperature properties of
NbO
2
${\text{NbO}}_{2}$
from a deep-learning interatomic potential
Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of . Treating the DFT results of the low- and intermediate-temperature phases of as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (>14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the (-) and (-) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.