VPGCD-Net:极地冰川变化遥感影像的视觉驱动网络

IF 4.4
Jianming Cui;Zhishen Shi;Xiaohan Chen;Jianzhi Yu;Binge Cui
{"title":"VPGCD-Net:极地冰川变化遥感影像的视觉驱动网络","authors":"Jianming Cui;Zhishen Shi;Xiaohan Chen;Jianzhi Yu;Binge Cui","doi":"10.1109/LGRS.2025.3581221","DOIUrl":null,"url":null,"abstract":"Monitoring glacier changes is essential for understanding global climate dynamics and assessing their environmental impacts. However, accurate detection remains challenging due to seasonal variations, illumination differences, and heterogeneous textures in remote sensing imagery. To address these issues, we propose VPGCD-Net, a transformer-based dual-branch network that achieves robust glacier change detection through visual prompt engineering. The visual prompting branch integrates threshold segmentation and difference calculation, leveraging a visual prompt transformer (VPT) to encode regions of significant change and generate high-level semantic prompts. Meanwhile, the change detection branch adopts ResNet18 as the backbone to extract dual-temporal features, followed by a transformer module for modeling global spatiotemporal dependencies and a feature-wise linear modulation (FiLM) module for adaptive feature modulation to emphasize real change regions. Complementing the method, we introduce the first polar-glacier-focused dataset specifically designed for deep-learning-based glacier change detection in remote sensing. Experimental results demonstrate that VPGCD-Net outperforms existing state-of-the-art methods, achieving superior accuracy even under complex conditions such as shadow interference. The dataset is publicly available at <uri>https://huggingface.co/datasets/cuibinge/Glacier-Dataset</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VPGCD-Net: A Visual Prompt-Driven Network for Polar Glacier Change Detection in Remote Sensing Imagery\",\"authors\":\"Jianming Cui;Zhishen Shi;Xiaohan Chen;Jianzhi Yu;Binge Cui\",\"doi\":\"10.1109/LGRS.2025.3581221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring glacier changes is essential for understanding global climate dynamics and assessing their environmental impacts. However, accurate detection remains challenging due to seasonal variations, illumination differences, and heterogeneous textures in remote sensing imagery. To address these issues, we propose VPGCD-Net, a transformer-based dual-branch network that achieves robust glacier change detection through visual prompt engineering. The visual prompting branch integrates threshold segmentation and difference calculation, leveraging a visual prompt transformer (VPT) to encode regions of significant change and generate high-level semantic prompts. Meanwhile, the change detection branch adopts ResNet18 as the backbone to extract dual-temporal features, followed by a transformer module for modeling global spatiotemporal dependencies and a feature-wise linear modulation (FiLM) module for adaptive feature modulation to emphasize real change regions. Complementing the method, we introduce the first polar-glacier-focused dataset specifically designed for deep-learning-based glacier change detection in remote sensing. Experimental results demonstrate that VPGCD-Net outperforms existing state-of-the-art methods, achieving superior accuracy even under complex conditions such as shadow interference. The dataset is publicly available at <uri>https://huggingface.co/datasets/cuibinge/Glacier-Dataset</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11044356/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11044356/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

监测冰川变化对于了解全球气候动态和评估其环境影响至关重要。然而,由于季节变化、光照差异和遥感图像的异质性,精确检测仍然具有挑战性。为了解决这些问题,我们提出了VPGCD-Net,这是一个基于变压器的双分支网络,通过视觉提示工程实现了强大的冰川变化检测。视觉提示分支集成了阈值分割和差异计算,利用视觉提示转换器(VPT)对显著变化区域进行编码并生成高级语义提示。同时,变化检测分支采用ResNet18作为主干提取双时相特征,随后采用transformer模块建模全局时空依赖关系,采用feature-wise linear modulation (FiLM)模块进行自适应特征调制,强调真实变化区域。作为对该方法的补充,我们引入了第一个专门为基于深度学习的遥感冰川变化检测设计的以极地冰川为重点的数据集。实验结果表明,VPGCD-Net优于现有的最先进的方法,即使在阴影干扰等复杂条件下也能获得更高的精度。该数据集可在https://huggingface.co/datasets/cuibinge/Glacier-Dataset上公开获取
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VPGCD-Net: A Visual Prompt-Driven Network for Polar Glacier Change Detection in Remote Sensing Imagery
Monitoring glacier changes is essential for understanding global climate dynamics and assessing their environmental impacts. However, accurate detection remains challenging due to seasonal variations, illumination differences, and heterogeneous textures in remote sensing imagery. To address these issues, we propose VPGCD-Net, a transformer-based dual-branch network that achieves robust glacier change detection through visual prompt engineering. The visual prompting branch integrates threshold segmentation and difference calculation, leveraging a visual prompt transformer (VPT) to encode regions of significant change and generate high-level semantic prompts. Meanwhile, the change detection branch adopts ResNet18 as the backbone to extract dual-temporal features, followed by a transformer module for modeling global spatiotemporal dependencies and a feature-wise linear modulation (FiLM) module for adaptive feature modulation to emphasize real change regions. Complementing the method, we introduce the first polar-glacier-focused dataset specifically designed for deep-learning-based glacier change detection in remote sensing. Experimental results demonstrate that VPGCD-Net outperforms existing state-of-the-art methods, achieving superior accuracy even under complex conditions such as shadow interference. The dataset is publicly available at https://huggingface.co/datasets/cuibinge/Glacier-Dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信