语义分割的类内和类间知识蒸馏

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ayoub Karine , Thibault Napoléon , Maher Jridi
{"title":"语义分割的类内和类间知识蒸馏","authors":"Ayoub Karine ,&nbsp;Thibault Napoléon ,&nbsp;Maher Jridi","doi":"10.1016/j.neucom.2025.130791","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a new knowledge distillation method tailored for image semantic segmentation, termed Intra- and Inter-Class Knowledge Distillation (I2CKD). The key novelty lies in its dual focus on transferring both intra-class and inter-class knowledge between intermediate layers of the teacher (cumbersome model) and student (compact model). For knowledge extraction, we exploit class prototypes derived from feature maps. To facilitate knowledge transfer, we employ a triplet loss in order to minimize intra-class variances and maximize inter-class variances between teacher and student prototypes. Consequently, I2CKD enables the student to better mimic the feature representation of the teacher for each class, thereby enhancing the segmentation performance of the compact network. Extensive experiments on four segmentation datasets, i.e., Cityscapes, Pascal VOC, CamVid and ADE20K, using various teacher–student network pairs demonstrate the effectiveness of the proposed method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130791"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"I2CKD : Intra- and inter-class knowledge distillation for semantic segmentation\",\"authors\":\"Ayoub Karine ,&nbsp;Thibault Napoléon ,&nbsp;Maher Jridi\",\"doi\":\"10.1016/j.neucom.2025.130791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a new knowledge distillation method tailored for image semantic segmentation, termed Intra- and Inter-Class Knowledge Distillation (I2CKD). The key novelty lies in its dual focus on transferring both intra-class and inter-class knowledge between intermediate layers of the teacher (cumbersome model) and student (compact model). For knowledge extraction, we exploit class prototypes derived from feature maps. To facilitate knowledge transfer, we employ a triplet loss in order to minimize intra-class variances and maximize inter-class variances between teacher and student prototypes. Consequently, I2CKD enables the student to better mimic the feature representation of the teacher for each class, thereby enhancing the segmentation performance of the compact network. Extensive experiments on four segmentation datasets, i.e., Cityscapes, Pascal VOC, CamVid and ADE20K, using various teacher–student network pairs demonstrate the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"649 \",\"pages\":\"Article 130791\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225014638\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014638","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的针对图像语义分割的知识蒸馏方法,称为类内和类间知识蒸馏(I2CKD)。关键的新颖之处在于它双重关注在教师(繁琐模型)和学生(紧凑模型)的中间层之间传递班级内和班级间的知识。对于知识提取,我们利用从特征图派生的类原型。为了促进知识转移,我们采用了三重损失来最小化班级内的差异,最大化教师和学生原型之间的班级间差异。因此,I2CKD使学生能够更好地模仿每个班级的老师的特征表示,从而提高紧凑网络的分割性能。在cityscape、Pascal VOC、CamVid和ADE20K四个分割数据集上使用不同的师生网络对进行了大量的实验,验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I2CKD : Intra- and inter-class knowledge distillation for semantic segmentation
This paper proposes a new knowledge distillation method tailored for image semantic segmentation, termed Intra- and Inter-Class Knowledge Distillation (I2CKD). The key novelty lies in its dual focus on transferring both intra-class and inter-class knowledge between intermediate layers of the teacher (cumbersome model) and student (compact model). For knowledge extraction, we exploit class prototypes derived from feature maps. To facilitate knowledge transfer, we employ a triplet loss in order to minimize intra-class variances and maximize inter-class variances between teacher and student prototypes. Consequently, I2CKD enables the student to better mimic the feature representation of the teacher for each class, thereby enhancing the segmentation performance of the compact network. Extensive experiments on four segmentation datasets, i.e., Cityscapes, Pascal VOC, CamVid and ADE20K, using various teacher–student network pairs demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信