自由随机微分方程的随机θ方法

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yuanling Niu, Jiaxin Wei, Zhi Yin, Dan Zeng
{"title":"自由随机微分方程的随机θ方法","authors":"Yuanling Niu, Jiaxin Wei, Zhi Yin, Dan Zeng","doi":"10.1093/imanum/draf044","DOIUrl":null,"url":null,"abstract":"We introduce free probability analogues of the stochastic theta methods for free stochastic differential equations in this work. Assuming that the drift coefficient of the free stochastic differential equations is operator Lipschitz and the diffusion coefficients are locally operator Lipschitz we prove the strong convergence of the numerical methods. Moreover, we investigate the exponential stability in mean square of the equations and the numerical methods. In particular, the free stochastic theta methods with $\\theta \\in [1/2, 1]$ can inherit the exponential stability of original equations for any given step size. Our methods offer better stability than the free Euler–Maruyama method. Numerical results are reported to confirm these theoretical findings and show the efficiency of our methods compared with the free Euler–Maruyama method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"18 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic theta methods for free stochastic differential equations\",\"authors\":\"Yuanling Niu, Jiaxin Wei, Zhi Yin, Dan Zeng\",\"doi\":\"10.1093/imanum/draf044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce free probability analogues of the stochastic theta methods for free stochastic differential equations in this work. Assuming that the drift coefficient of the free stochastic differential equations is operator Lipschitz and the diffusion coefficients are locally operator Lipschitz we prove the strong convergence of the numerical methods. Moreover, we investigate the exponential stability in mean square of the equations and the numerical methods. In particular, the free stochastic theta methods with $\\\\theta \\\\in [1/2, 1]$ can inherit the exponential stability of original equations for any given step size. Our methods offer better stability than the free Euler–Maruyama method. Numerical results are reported to confirm these theoretical findings and show the efficiency of our methods compared with the free Euler–Maruyama method.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf044\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf044","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了自由随机微分方程的随机方法的自由概率类比。假设自由随机微分方程的漂移系数为算子Lipschitz,扩散系数为局部算子Lipschitz,证明了数值方法的强收敛性。此外,我们还研究了方程均方的指数稳定性和数值方法。特别地,具有$\theta \ In[1/2, 1]$的自由随机θ方法可以在任意给定步长下继承原方程的指数稳定性。我们的方法比自由的Euler-Maruyama方法具有更好的稳定性。数值结果证实了这些理论发现,并与自由Euler-Maruyama方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic theta methods for free stochastic differential equations
We introduce free probability analogues of the stochastic theta methods for free stochastic differential equations in this work. Assuming that the drift coefficient of the free stochastic differential equations is operator Lipschitz and the diffusion coefficients are locally operator Lipschitz we prove the strong convergence of the numerical methods. Moreover, we investigate the exponential stability in mean square of the equations and the numerical methods. In particular, the free stochastic theta methods with $\theta \in [1/2, 1]$ can inherit the exponential stability of original equations for any given step size. Our methods offer better stability than the free Euler–Maruyama method. Numerical results are reported to confirm these theoretical findings and show the efficiency of our methods compared with the free Euler–Maruyama method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信