光子计数微型ct扫描仪用于支持深度学习的小动物灌注成像。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Alex Jeffrey Allphin, Rohan Nadkarni, Darin P Clark, Cristian T Badea
{"title":"光子计数微型ct扫描仪用于支持深度学习的小动物灌注成像。","authors":"Alex Jeffrey Allphin, Rohan Nadkarni, Darin P Clark, Cristian T Badea","doi":"10.1088/1361-6560/ade94b","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this work, we introduce a benchtop, turn-table photon-counting (PC) micro-CT scanner and highlight its application for dynamic small animal perfusion imaging.&#xD;Approach: Built on recently published hardware, the system now features a CdTe-based photon-counting detector (PCD). We validated its static spectral PC micro-CT imaging using conventional phantoms and assessed dynamic performance with a custom flow-configurable dual-compartment perfusion phantom. The phantom was scanned under varied flow conditions during injections of a low molecular weight iodinated contrast agent. In vivo mouse studies with identical injection settings demonstrated potential applications. A pretrained denoising CNN processed large multi-energy, temporal datasets (20 timepoints × 4 energies × 3 spatial dimensions), reconstructed via weighted filtered back projection. A separate CNN, trained on simulated data, performed gamma variate-based 2D perfusion mapping, evaluated qualitatively in phantom and in vivo tests.&#xD;Main Results: Full five-dimensional reconstructions were denoised using a CNN in ~3% of the time of iterative reconstruction, reducing noise in water at the highest energy threshold from 1206 HU to 86 HU. Decomposed iodine maps, which improved contrast to noise ratio from 16.4 (in the lowest energy CT images) to 29.4 (in the iodine maps), were used for perfusion analysis. The perfusion CNN outperformed pixelwise gamma variate fitting by ~33%, with a test set error of 0.04 vs. 0.06 in blood flow index (BFI) maps, and quantified linear BFI changes in the phantom with a coefficient of determination of 0.98.&#xD;Significance: This work underscores the PC micro-CT scanner's utility for high-throughput small animal perfusion imaging, leveraging spectral PC micro-CT and iodine decomposition. It provides a versatile platform for preclinical vascular research and advanced, time-resolved studies of disease models and therapeutic interventions.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-counting micro-CT scanner for deep learning-enabled small animal perfusion imaging.\",\"authors\":\"Alex Jeffrey Allphin, Rohan Nadkarni, Darin P Clark, Cristian T Badea\",\"doi\":\"10.1088/1361-6560/ade94b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>In this work, we introduce a benchtop, turn-table photon-counting (PC) micro-CT scanner and highlight its application for dynamic small animal perfusion imaging.&#xD;Approach: Built on recently published hardware, the system now features a CdTe-based photon-counting detector (PCD). We validated its static spectral PC micro-CT imaging using conventional phantoms and assessed dynamic performance with a custom flow-configurable dual-compartment perfusion phantom. The phantom was scanned under varied flow conditions during injections of a low molecular weight iodinated contrast agent. In vivo mouse studies with identical injection settings demonstrated potential applications. A pretrained denoising CNN processed large multi-energy, temporal datasets (20 timepoints × 4 energies × 3 spatial dimensions), reconstructed via weighted filtered back projection. A separate CNN, trained on simulated data, performed gamma variate-based 2D perfusion mapping, evaluated qualitatively in phantom and in vivo tests.&#xD;Main Results: Full five-dimensional reconstructions were denoised using a CNN in ~3% of the time of iterative reconstruction, reducing noise in water at the highest energy threshold from 1206 HU to 86 HU. Decomposed iodine maps, which improved contrast to noise ratio from 16.4 (in the lowest energy CT images) to 29.4 (in the iodine maps), were used for perfusion analysis. The perfusion CNN outperformed pixelwise gamma variate fitting by ~33%, with a test set error of 0.04 vs. 0.06 in blood flow index (BFI) maps, and quantified linear BFI changes in the phantom with a coefficient of determination of 0.98.&#xD;Significance: This work underscores the PC micro-CT scanner's utility for high-throughput small animal perfusion imaging, leveraging spectral PC micro-CT and iodine decomposition. It provides a versatile platform for preclinical vascular research and advanced, time-resolved studies of disease models and therapeutic interventions.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ade94b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ade94b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:在这项工作中,我们介绍了一种台式,转台光子计数(PC)微型ct扫描仪,并重点介绍了它在动态小动物灌注成像中的应用。方法:基于最近发布的硬件,该系统现在具有基于cdte的光子计数检测器(PCD)。我们使用传统模型验证了其静态光谱PC微ct成像,并使用定制的可配置流量的双室灌注模型评估了其动态性能。在注射低分子量碘造影剂期间,在不同的流动条件下扫描幻像。具有相同注射设置的小鼠体内研究显示了潜在的应用。预训练去噪CNN处理大型多能量时间数据集(20个时间点× 4个能量× 3个空间维度),通过加权滤波后的反投影重建。一个单独的CNN,在模拟数据上训练,进行基于伽马变量的二维灌注映射,在幻影和体内测试中进行定性评估。主要结果:使用CNN在约3%的迭代重建时间内对全五维重建进行去噪,将最高能量阈值从1206 HU降至86 HU的水中噪声降低。将分解后的碘图用于灌注分析,将噪比从16.4(最低能量CT图像)提高到29.4(碘图)。灌注CNN在像素上的伽马变量拟合优于33%,血流量指数(BFI)图的测试集误差为0.04比0.06,并且量化了虚幻体中BFI的线性变化,决定系数为0.98。意义:本工作强调了PC微型ct扫描仪在高通量小动物灌注成像中的应用,利用光谱PC微型ct和碘分解。它为临床前血管研究和先进的、时间解决的疾病模型和治疗干预研究提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photon-counting micro-CT scanner for deep learning-enabled small animal perfusion imaging.

Objective: In this work, we introduce a benchtop, turn-table photon-counting (PC) micro-CT scanner and highlight its application for dynamic small animal perfusion imaging. Approach: Built on recently published hardware, the system now features a CdTe-based photon-counting detector (PCD). We validated its static spectral PC micro-CT imaging using conventional phantoms and assessed dynamic performance with a custom flow-configurable dual-compartment perfusion phantom. The phantom was scanned under varied flow conditions during injections of a low molecular weight iodinated contrast agent. In vivo mouse studies with identical injection settings demonstrated potential applications. A pretrained denoising CNN processed large multi-energy, temporal datasets (20 timepoints × 4 energies × 3 spatial dimensions), reconstructed via weighted filtered back projection. A separate CNN, trained on simulated data, performed gamma variate-based 2D perfusion mapping, evaluated qualitatively in phantom and in vivo tests. Main Results: Full five-dimensional reconstructions were denoised using a CNN in ~3% of the time of iterative reconstruction, reducing noise in water at the highest energy threshold from 1206 HU to 86 HU. Decomposed iodine maps, which improved contrast to noise ratio from 16.4 (in the lowest energy CT images) to 29.4 (in the iodine maps), were used for perfusion analysis. The perfusion CNN outperformed pixelwise gamma variate fitting by ~33%, with a test set error of 0.04 vs. 0.06 in blood flow index (BFI) maps, and quantified linear BFI changes in the phantom with a coefficient of determination of 0.98. Significance: This work underscores the PC micro-CT scanner's utility for high-throughput small animal perfusion imaging, leveraging spectral PC micro-CT and iodine decomposition. It provides a versatile platform for preclinical vascular research and advanced, time-resolved studies of disease models and therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信