微生物问题:探索婴儿肠道微生物群与骨骼发育之间的联系。

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Perry Caviness, Bharath K Mulakala, Oxana P Lorenzo, Tianming Yao, Stephen R Lindemann, Fernanda Rosa, Laxmi Yeruva, Jin-Ran Chen
{"title":"微生物问题:探索婴儿肠道微生物群与骨骼发育之间的联系。","authors":"Perry Caviness, Bharath K Mulakala, Oxana P Lorenzo, Tianming Yao, Stephen R Lindemann, Fernanda Rosa, Laxmi Yeruva, Jin-Ran Chen","doi":"10.1007/s00223-025-01395-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human milk, compared to milk formula, is considered the optimal source of nutrition for infants as it can shape offspring microbiome composition, which is necessary for the production of key biomolecules that aid in development of infant physiological systems. A variety of factors in human milk can influence infant microbiome composition. One such factor is the type of oligosaccharides present, which is determined in part by maternal secretor status and itself determined by expression of fucosyltransferase-2 (FUT2). The aim of this study was to investigate the effects of secretor or non-secretor human milk as well as infant milk formula on infant gut microbiome composition and whether these changes in microbiota impact bone development. Fecal microbiota transfer from infants fed human milk from secretor mothers (SMM) or non-secretor mothers (NSM) as well as those fed infant milk formula (MFM) into 21-day-old germ-free mice were performed. After 35 days, gut microbiome composition and bone development were analyzed using 16S rRNA sequencing and µCT analysis. At the genus level, Phocaeicola and Akkermansia are upregulated for SMM and NSM mice respectively, while family Ruminococcaceae is increased for MFM mice. Percent bone volume (BV/TV) and trabecular number (Tb N) were significantly decreased for MFM mice but unaltered for SMM and NSM mice compared to germ-free controls (GF CTRL). Measurement of bone marrow plasma inflammatory factor levels shows a significant increase in TNF-α and IL-1β for SMM and NSM mice, both potential promoters of osteoclastogenesis under certain conditions, compared to MFM and GF CTRL mice. Data suggests that milk formula feeding may suppress infant bone growth and development by altering gut microbiome composition.</p>","PeriodicalId":9601,"journal":{"name":"Calcified Tissue International","volume":"116 1","pages":"90"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbes Matter: Exploring the Connection Between Infant Gut Microbiota and Bone Development.\",\"authors\":\"Perry Caviness, Bharath K Mulakala, Oxana P Lorenzo, Tianming Yao, Stephen R Lindemann, Fernanda Rosa, Laxmi Yeruva, Jin-Ran Chen\",\"doi\":\"10.1007/s00223-025-01395-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human milk, compared to milk formula, is considered the optimal source of nutrition for infants as it can shape offspring microbiome composition, which is necessary for the production of key biomolecules that aid in development of infant physiological systems. A variety of factors in human milk can influence infant microbiome composition. One such factor is the type of oligosaccharides present, which is determined in part by maternal secretor status and itself determined by expression of fucosyltransferase-2 (FUT2). The aim of this study was to investigate the effects of secretor or non-secretor human milk as well as infant milk formula on infant gut microbiome composition and whether these changes in microbiota impact bone development. Fecal microbiota transfer from infants fed human milk from secretor mothers (SMM) or non-secretor mothers (NSM) as well as those fed infant milk formula (MFM) into 21-day-old germ-free mice were performed. After 35 days, gut microbiome composition and bone development were analyzed using 16S rRNA sequencing and µCT analysis. At the genus level, Phocaeicola and Akkermansia are upregulated for SMM and NSM mice respectively, while family Ruminococcaceae is increased for MFM mice. Percent bone volume (BV/TV) and trabecular number (Tb N) were significantly decreased for MFM mice but unaltered for SMM and NSM mice compared to germ-free controls (GF CTRL). Measurement of bone marrow plasma inflammatory factor levels shows a significant increase in TNF-α and IL-1β for SMM and NSM mice, both potential promoters of osteoclastogenesis under certain conditions, compared to MFM and GF CTRL mice. Data suggests that milk formula feeding may suppress infant bone growth and development by altering gut microbiome composition.</p>\",\"PeriodicalId\":9601,\"journal\":{\"name\":\"Calcified Tissue International\",\"volume\":\"116 1\",\"pages\":\"90\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcified Tissue International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00223-025-01395-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcified Tissue International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00223-025-01395-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

与配方奶相比,母乳被认为是婴儿营养的最佳来源,因为它可以塑造后代微生物组的组成,这对于帮助婴儿生理系统发育的关键生物分子的产生是必要的。人乳中的多种因素可影响婴儿微生物组组成。其中一个因素是存在的寡糖类型,它部分由母体分泌状态决定,本身由focusyltransferase-2 (FUT2)的表达决定。本研究的目的是研究分泌型或非分泌型母乳以及婴儿配方奶粉对婴儿肠道微生物群组成的影响,以及这些微生物群的变化是否会影响骨骼发育。研究了用分泌母鼠(SMM)或无分泌母鼠(NSM)喂养的婴儿以及用婴儿配方奶粉(MFM)喂养的婴儿在21日龄无菌小鼠体内的粪便微生物群转移。35 d后,采用16S rRNA测序和微CT分析分析肠道微生物组组成和骨骼发育情况。在属水平上,Phocaeicola和Akkermansia在SMM和NSM小鼠中分别上调,而Ruminococcaceae家族在MFM小鼠中上调。与无菌对照(GF CTRL)相比,MFM小鼠骨体积百分比(BV/TV)和骨小梁数量(Tb N)显著降低,而SMM和NSM小鼠的骨小梁数量(Tb N)不变。测量骨髓血浆炎症因子水平显示,与MFM和GF CTRL小鼠相比,SMM和NSM小鼠的TNF-α和IL-1β在一定条件下显著增加,两者都是破骨细胞生成的潜在促进因子。数据表明,配方奶粉喂养可能通过改变肠道微生物组成来抑制婴儿骨骼生长和发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbes Matter: Exploring the Connection Between Infant Gut Microbiota and Bone Development.

Human milk, compared to milk formula, is considered the optimal source of nutrition for infants as it can shape offspring microbiome composition, which is necessary for the production of key biomolecules that aid in development of infant physiological systems. A variety of factors in human milk can influence infant microbiome composition. One such factor is the type of oligosaccharides present, which is determined in part by maternal secretor status and itself determined by expression of fucosyltransferase-2 (FUT2). The aim of this study was to investigate the effects of secretor or non-secretor human milk as well as infant milk formula on infant gut microbiome composition and whether these changes in microbiota impact bone development. Fecal microbiota transfer from infants fed human milk from secretor mothers (SMM) or non-secretor mothers (NSM) as well as those fed infant milk formula (MFM) into 21-day-old germ-free mice were performed. After 35 days, gut microbiome composition and bone development were analyzed using 16S rRNA sequencing and µCT analysis. At the genus level, Phocaeicola and Akkermansia are upregulated for SMM and NSM mice respectively, while family Ruminococcaceae is increased for MFM mice. Percent bone volume (BV/TV) and trabecular number (Tb N) were significantly decreased for MFM mice but unaltered for SMM and NSM mice compared to germ-free controls (GF CTRL). Measurement of bone marrow plasma inflammatory factor levels shows a significant increase in TNF-α and IL-1β for SMM and NSM mice, both potential promoters of osteoclastogenesis under certain conditions, compared to MFM and GF CTRL mice. Data suggests that milk formula feeding may suppress infant bone growth and development by altering gut microbiome composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcified Tissue International
Calcified Tissue International 医学-内分泌学与代谢
CiteScore
8.00
自引率
2.40%
发文量
112
审稿时长
4-8 weeks
期刊介绍: Calcified Tissue International and Musculoskeletal Research publishes original research and reviews concerning the structure and function of bone, and other musculoskeletal tissues in living organisms and clinical studies of musculoskeletal disease. It includes studies of cell biology, molecular biology, intracellular signalling, and physiology, as well as research into the hormones, cytokines and other mediators that influence the musculoskeletal system. The journal also publishes clinical studies of relevance to bone disease, mineral metabolism, muscle function, and musculoskeletal interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信