Kesha K Dalal, Venkatesh Katari, Narendra Kondapalli, Sailaja Paruchuri, Charles K Thodeti
{"title":"血管网络中的内皮代谢分区:血管生成的时空蓝图。","authors":"Kesha K Dalal, Venkatesh Katari, Narendra Kondapalli, Sailaja Paruchuri, Charles K Thodeti","doi":"10.1152/ajpheart.00352.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenesis, a cornerstone of vascular development, tissue regeneration, and tumor progression, is critically orchestrated by the metabolic behavior of endothelial cells (ECs). Recent discoveries have redefined ECs not as metabolically uniform entities, but as spatially and functionally heterogeneous populations whose metabolic states govern their angiogenic potential. This review presents a comprehensive synthesis of metabolic zonation in ECs, spanning arterial, venous, and capillary domains, and highlights cell-type-specific programs during sprouting angiogenesis-including tip, stalk, and phalanx cells. We explore how distinct metabolic pathways-glycolysis, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis-are differentially utilized across tissue contexts such as the brain, skeletal muscle, kidney, and tumor microenvironments. We discuss technological breakthroughs in spatial metabolomics, temporal (circadian) regulation of endothelial metabolism, and emerging clinical strategies to target EC metabolic vulnerabilities in cancer and ischemic diseases. Furthermore, we advocate for spatiotemporal modeling of EC metabolism using computational and machine learning frameworks to predict angiogenic behavior and accelerate therapeutic discovery. This integrative perspective underscores the need for precision-targeted angiogenic interventions and establishes metabolic zonation as a foundational principle in vascular biology.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial Metabolic Zonation in the Vascular Network: A Spatiotemporal Blueprint for Angiogenesis.\",\"authors\":\"Kesha K Dalal, Venkatesh Katari, Narendra Kondapalli, Sailaja Paruchuri, Charles K Thodeti\",\"doi\":\"10.1152/ajpheart.00352.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiogenesis, a cornerstone of vascular development, tissue regeneration, and tumor progression, is critically orchestrated by the metabolic behavior of endothelial cells (ECs). Recent discoveries have redefined ECs not as metabolically uniform entities, but as spatially and functionally heterogeneous populations whose metabolic states govern their angiogenic potential. This review presents a comprehensive synthesis of metabolic zonation in ECs, spanning arterial, venous, and capillary domains, and highlights cell-type-specific programs during sprouting angiogenesis-including tip, stalk, and phalanx cells. We explore how distinct metabolic pathways-glycolysis, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis-are differentially utilized across tissue contexts such as the brain, skeletal muscle, kidney, and tumor microenvironments. We discuss technological breakthroughs in spatial metabolomics, temporal (circadian) regulation of endothelial metabolism, and emerging clinical strategies to target EC metabolic vulnerabilities in cancer and ischemic diseases. Furthermore, we advocate for spatiotemporal modeling of EC metabolism using computational and machine learning frameworks to predict angiogenic behavior and accelerate therapeutic discovery. This integrative perspective underscores the need for precision-targeted angiogenic interventions and establishes metabolic zonation as a foundational principle in vascular biology.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00352.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00352.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Endothelial Metabolic Zonation in the Vascular Network: A Spatiotemporal Blueprint for Angiogenesis.
Angiogenesis, a cornerstone of vascular development, tissue regeneration, and tumor progression, is critically orchestrated by the metabolic behavior of endothelial cells (ECs). Recent discoveries have redefined ECs not as metabolically uniform entities, but as spatially and functionally heterogeneous populations whose metabolic states govern their angiogenic potential. This review presents a comprehensive synthesis of metabolic zonation in ECs, spanning arterial, venous, and capillary domains, and highlights cell-type-specific programs during sprouting angiogenesis-including tip, stalk, and phalanx cells. We explore how distinct metabolic pathways-glycolysis, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis-are differentially utilized across tissue contexts such as the brain, skeletal muscle, kidney, and tumor microenvironments. We discuss technological breakthroughs in spatial metabolomics, temporal (circadian) regulation of endothelial metabolism, and emerging clinical strategies to target EC metabolic vulnerabilities in cancer and ischemic diseases. Furthermore, we advocate for spatiotemporal modeling of EC metabolism using computational and machine learning frameworks to predict angiogenic behavior and accelerate therapeutic discovery. This integrative perspective underscores the need for precision-targeted angiogenic interventions and establishes metabolic zonation as a foundational principle in vascular biology.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.