Katharina Raasch, Pauline Henrot, Alice Hadchouel-Duvergé, Maeva Zysman, Isabelle Dupin
{"title":"了解和操纵形态发生过程以产生体外气道模型。","authors":"Katharina Raasch, Pauline Henrot, Alice Hadchouel-Duvergé, Maeva Zysman, Isabelle Dupin","doi":"10.1152/ajplung.00015.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Branching morphogenesis, the process by which cells and tissues organize into complex branched tubular structures, is fundamental to the development of functional organs, including the respiratory airways in mammalian lungs. Advances in understanding the molecular and cellular mechanisms driving morphogenetic processes have enabled the development of sophisticated in vitro models that mimic the structure and function of airways. This review recapitulates developmental principles guiding airway morphogenesis, including the key signaling pathways, cellular interactions, and the different biochemical and mechanical cues. We discuss how these principles have been harnessed to engineer in vitro models of airways, providing a comprehensive overview of current artificial lung culture systems. We consider fully morphogenetic-mimicking strategies such as organoid modeling to more reductionist strategies, such as airway-on-chip systems. By examining both the breakthroughs and current limitations, we highlight the potential of these models to reproduce airway physiology and diseases, such as congenital pulmonary airway malformation and chronic obstructive pulmonary disease. Furthermore, we consider future directions in the field, emphasizing the need for controlling complex environmental cues and integrating multiple cellular components to create increasingly accurate and functional airway models.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L234-L254"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding and manipulating morphogenetic processes to generate in vitro models of airways.\",\"authors\":\"Katharina Raasch, Pauline Henrot, Alice Hadchouel-Duvergé, Maeva Zysman, Isabelle Dupin\",\"doi\":\"10.1152/ajplung.00015.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Branching morphogenesis, the process by which cells and tissues organize into complex branched tubular structures, is fundamental to the development of functional organs, including the respiratory airways in mammalian lungs. Advances in understanding the molecular and cellular mechanisms driving morphogenetic processes have enabled the development of sophisticated in vitro models that mimic the structure and function of airways. This review recapitulates developmental principles guiding airway morphogenesis, including the key signaling pathways, cellular interactions, and the different biochemical and mechanical cues. We discuss how these principles have been harnessed to engineer in vitro models of airways, providing a comprehensive overview of current artificial lung culture systems. We consider fully morphogenetic-mimicking strategies such as organoid modeling to more reductionist strategies, such as airway-on-chip systems. By examining both the breakthroughs and current limitations, we highlight the potential of these models to reproduce airway physiology and diseases, such as congenital pulmonary airway malformation and chronic obstructive pulmonary disease. Furthermore, we consider future directions in the field, emphasizing the need for controlling complex environmental cues and integrating multiple cellular components to create increasingly accurate and functional airway models.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L234-L254\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00015.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00015.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Understanding and manipulating morphogenetic processes to generate in vitro models of airways.
Branching morphogenesis, the process by which cells and tissues organize into complex branched tubular structures, is fundamental to the development of functional organs, including the respiratory airways in mammalian lungs. Advances in understanding the molecular and cellular mechanisms driving morphogenetic processes have enabled the development of sophisticated in vitro models that mimic the structure and function of airways. This review recapitulates developmental principles guiding airway morphogenesis, including the key signaling pathways, cellular interactions, and the different biochemical and mechanical cues. We discuss how these principles have been harnessed to engineer in vitro models of airways, providing a comprehensive overview of current artificial lung culture systems. We consider fully morphogenetic-mimicking strategies such as organoid modeling to more reductionist strategies, such as airway-on-chip systems. By examining both the breakthroughs and current limitations, we highlight the potential of these models to reproduce airway physiology and diseases, such as congenital pulmonary airway malformation and chronic obstructive pulmonary disease. Furthermore, we consider future directions in the field, emphasizing the need for controlling complex environmental cues and integrating multiple cellular components to create increasingly accurate and functional airway models.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.