计算基准研究在时空统计与实践指南优化R

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-06-28 DOI:10.1002/env.70017
Lorenzo Tedesco, Jacopo Rodeschini, Philipp Otto
{"title":"计算基准研究在时空统计与实践指南优化R","authors":"Lorenzo Tedesco,&nbsp;Jacopo Rodeschini,&nbsp;Philipp Otto","doi":"10.1002/env.70017","DOIUrl":null,"url":null,"abstract":"<p>This study provides a comprehensive evaluation of the computational performance of <span>R</span>, <span>MATLAB</span>, <span>Python</span>, and <span>Julia</span> for spatial and spatio-temporal modelling, focusing on high-dimensional datasets typical in geospatial statistical analysis. We benchmark each language across key tasks, including matrix manipulations and transformations, iterative programming routines, and Input/Output processes, all of which are critical in environmetrics. The results demonstrate that <span>MATLAB</span> excels in matrix-based computations, while <span>Julia</span> consistently delivers competitive performance across a wide range of tasks, establishing itself as a robust, open-source alternative. <span>Python</span>, when combined with libraries like <span>NumPy</span>, shows strength in specific numerical operations, offering versatility for general-purpose programming. <span>R</span>, despite its slower default performance in raw computations, proves to be highly adaptable; by linking to optimized libraries like <span>OpenBLAS</span> or <span>MKL</span> and integrating <span>C++</span> with packages like <span>Rcpp</span>, <span>R</span> achieves significant performance gains, becoming competitive with the other languages. This study also provides practical guidance for researchers to optimize <span>R</span> for geospatial data processing, offering insights to support the selection of the most suitable language for specific modelling requirements.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70017","citationCount":"0","resultStr":"{\"title\":\"Computational Benchmark Study in Spatio-Temporal Statistics With a Hands-On Guide to Optimise R\",\"authors\":\"Lorenzo Tedesco,&nbsp;Jacopo Rodeschini,&nbsp;Philipp Otto\",\"doi\":\"10.1002/env.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study provides a comprehensive evaluation of the computational performance of <span>R</span>, <span>MATLAB</span>, <span>Python</span>, and <span>Julia</span> for spatial and spatio-temporal modelling, focusing on high-dimensional datasets typical in geospatial statistical analysis. We benchmark each language across key tasks, including matrix manipulations and transformations, iterative programming routines, and Input/Output processes, all of which are critical in environmetrics. The results demonstrate that <span>MATLAB</span> excels in matrix-based computations, while <span>Julia</span> consistently delivers competitive performance across a wide range of tasks, establishing itself as a robust, open-source alternative. <span>Python</span>, when combined with libraries like <span>NumPy</span>, shows strength in specific numerical operations, offering versatility for general-purpose programming. <span>R</span>, despite its slower default performance in raw computations, proves to be highly adaptable; by linking to optimized libraries like <span>OpenBLAS</span> or <span>MKL</span> and integrating <span>C++</span> with packages like <span>Rcpp</span>, <span>R</span> achieves significant performance gains, becoming competitive with the other languages. This study also provides practical guidance for researchers to optimize <span>R</span> for geospatial data processing, offering insights to support the selection of the most suitable language for specific modelling requirements.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70017\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70017","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究对R、MATLAB、Python和Julia在空间和时空建模中的计算性能进行了综合评估,重点关注地理空间统计分析中典型的高维数据集。我们在关键任务上对每种语言进行基准测试,包括矩阵操作和转换、迭代编程例程和输入/输出过程,所有这些都是环境度量的关键。结果表明MATLAB在基于矩阵的计算方面表现出色,而Julia在广泛的任务中始终提供具有竞争力的性能,将自己建立为一个强大的开源替代方案。Python与NumPy等库结合使用时,在特定的数值运算中显示出强大的能力,为通用编程提供了多功能性。尽管R在原始计算中的默认性能较慢,但事实证明它具有很高的适应性;通过链接到像OpenBLAS或MKL这样的优化库,并将c++与Rcpp这样的包集成,R实现了显著的性能提升,与其他语言竞争。本研究还为研究人员优化R用于地理空间数据处理提供了实践指导,为支持选择最适合特定建模要求的语言提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational Benchmark Study in Spatio-Temporal Statistics With a Hands-On Guide to Optimise R

Computational Benchmark Study in Spatio-Temporal Statistics With a Hands-On Guide to Optimise R

This study provides a comprehensive evaluation of the computational performance of R, MATLAB, Python, and Julia for spatial and spatio-temporal modelling, focusing on high-dimensional datasets typical in geospatial statistical analysis. We benchmark each language across key tasks, including matrix manipulations and transformations, iterative programming routines, and Input/Output processes, all of which are critical in environmetrics. The results demonstrate that MATLAB excels in matrix-based computations, while Julia consistently delivers competitive performance across a wide range of tasks, establishing itself as a robust, open-source alternative. Python, when combined with libraries like NumPy, shows strength in specific numerical operations, offering versatility for general-purpose programming. R, despite its slower default performance in raw computations, proves to be highly adaptable; by linking to optimized libraries like OpenBLAS or MKL and integrating C++ with packages like Rcpp, R achieves significant performance gains, becoming competitive with the other languages. This study also provides practical guidance for researchers to optimize R for geospatial data processing, offering insights to support the selection of the most suitable language for specific modelling requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信