左定分数哈密顿系统:Titchmarsh-Weyl理论

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ekin Uğurlu
{"title":"左定分数哈密顿系统:Titchmarsh-Weyl理论","authors":"Ekin Uğurlu","doi":"10.1016/j.chaos.2025.116756","DOIUrl":null,"url":null,"abstract":"<div><div>Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least <span><math><mi>r</mi></math></span>-solutions of the <span><math><mrow><mn>2</mn><mi>r</mi></mrow></math></span>-dimensional system of equations should be Dirichlet-integrable on a given interval.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116756"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left-definite fractional Hamiltonian systems: Titchmarsh-Weyl theory\",\"authors\":\"Ekin Uğurlu\",\"doi\":\"10.1016/j.chaos.2025.116756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least <span><math><mi>r</mi></math></span>-solutions of the <span><math><mrow><mn>2</mn><mi>r</mi></mrow></math></span>-dimensional system of equations should be Dirichlet-integrable on a given interval.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116756\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007696\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007696","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

当考虑由普通导数生成的形式对称边值问题时,哈密顿系统是有用的。然而,如果将普通导数改为非整数阶(分数阶)导数,则不容易研究相应的问题。本文通过构造分数阶哈密顿系统,介绍了一种处理分数阶边值问题的系统方法。特别地,我们考虑了一个左定方程组,并为此方程组构造了巢圆理论(Weyl理论)。利用Titchmarsh-Weyl函数,证明了2r维方程组的至少r个解在给定区间上是dirichlet可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Left-definite fractional Hamiltonian systems: Titchmarsh-Weyl theory
Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least r-solutions of the 2r-dimensional system of equations should be Dirichlet-integrable on a given interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信