{"title":"左定分数哈密顿系统:Titchmarsh-Weyl理论","authors":"Ekin Uğurlu","doi":"10.1016/j.chaos.2025.116756","DOIUrl":null,"url":null,"abstract":"<div><div>Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least <span><math><mi>r</mi></math></span>-solutions of the <span><math><mrow><mn>2</mn><mi>r</mi></mrow></math></span>-dimensional system of equations should be Dirichlet-integrable on a given interval.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116756"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left-definite fractional Hamiltonian systems: Titchmarsh-Weyl theory\",\"authors\":\"Ekin Uğurlu\",\"doi\":\"10.1016/j.chaos.2025.116756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least <span><math><mi>r</mi></math></span>-solutions of the <span><math><mrow><mn>2</mn><mi>r</mi></mrow></math></span>-dimensional system of equations should be Dirichlet-integrable on a given interval.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116756\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007696\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007696","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Left-definite fractional Hamiltonian systems: Titchmarsh-Weyl theory
Hamiltonian systems are useful when formally symmetric boundary value problems generated by ordinary derivatives are considered. However, if the ordinary derivatives are changed by non-integer-order (fractional) derivatives, it is not easy to investigate the corresponding problems. In this paper, we introduce a systematic approach to dealing with fractional boundary value problems by constructing a fractional Hamiltonian system. In particular, we consider a left-definite system, and we construct nested-circles theory (Weyl theory) for this system of equations. Using the Titchmarsh-Weyl function, we prove that at least -solutions of the -dimensional system of equations should be Dirichlet-integrable on a given interval.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.