探索数据增强方法,增强脑电图检测癫痫发作的能力

IF 6.3 2区 医学 Q1 BIOLOGY
Yao Guo , Xiaoxiao Zhang , Chenyun Dai
{"title":"探索数据增强方法,增强脑电图检测癫痫发作的能力","authors":"Yao Guo ,&nbsp;Xiaoxiao Zhang ,&nbsp;Chenyun Dai","doi":"10.1016/j.compbiomed.2025.110512","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic seizure detection using machine learning can reduce the workload of clinicians in epilepsy diagnosis. However, the class imbalance between seizure and non-seizure data limits model performance. Data augmentation offers a solution, yet few studies have systematically compared different augmentation strategies for seizure classification. In this study, we evaluate 12 data augmentation methods across multiple classifiers using EEG data. Beyond accuracy, we assess waveform preservation, spectral consistency, runtime, and feature separability. Results show that Magnitude Warping (MagWarp), Scaling, and Scaling for Multiple Channels (ScalingMulti) consistently yield superior performance. These findings provide practical insights into selecting effective augmentation techniques for real-world epilepsy detection systems and can support more reliable, automated diagnostic tools in clinical practice.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"195 ","pages":"Article 110512"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring data augmentation methods to enhance EEG measures for epilepsy seizure detection\",\"authors\":\"Yao Guo ,&nbsp;Xiaoxiao Zhang ,&nbsp;Chenyun Dai\",\"doi\":\"10.1016/j.compbiomed.2025.110512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automatic seizure detection using machine learning can reduce the workload of clinicians in epilepsy diagnosis. However, the class imbalance between seizure and non-seizure data limits model performance. Data augmentation offers a solution, yet few studies have systematically compared different augmentation strategies for seizure classification. In this study, we evaluate 12 data augmentation methods across multiple classifiers using EEG data. Beyond accuracy, we assess waveform preservation, spectral consistency, runtime, and feature separability. Results show that Magnitude Warping (MagWarp), Scaling, and Scaling for Multiple Channels (ScalingMulti) consistently yield superior performance. These findings provide practical insights into selecting effective augmentation techniques for real-world epilepsy detection systems and can support more reliable, automated diagnostic tools in clinical practice.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"195 \",\"pages\":\"Article 110512\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525008637\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525008637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用机器学习进行癫痫发作自动检测可以减少临床医生在癫痫诊断方面的工作量。然而,癫痫发作和非癫痫发作数据之间的类不平衡限制了模型的性能。数据增强提供了一种解决方案,但很少有研究系统地比较不同的增强策略对癫痫发作的分类。在这项研究中,我们评估了12种跨多个分类器使用EEG数据的数据增强方法。除了准确性之外,我们还评估了波形保存、频谱一致性、运行时间和特征可分离性。结果表明,幅度扭曲(MagWarp),缩放和多通道缩放(ScalingMulti)一致产生卓越的性能。这些发现为为现实世界的癫痫检测系统选择有效的增强技术提供了实用的见解,并可以在临床实践中支持更可靠的自动化诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring data augmentation methods to enhance EEG measures for epilepsy seizure detection
Automatic seizure detection using machine learning can reduce the workload of clinicians in epilepsy diagnosis. However, the class imbalance between seizure and non-seizure data limits model performance. Data augmentation offers a solution, yet few studies have systematically compared different augmentation strategies for seizure classification. In this study, we evaluate 12 data augmentation methods across multiple classifiers using EEG data. Beyond accuracy, we assess waveform preservation, spectral consistency, runtime, and feature separability. Results show that Magnitude Warping (MagWarp), Scaling, and Scaling for Multiple Channels (ScalingMulti) consistently yield superior performance. These findings provide practical insights into selecting effective augmentation techniques for real-world epilepsy detection systems and can support more reliable, automated diagnostic tools in clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信