GRU-SCANET:释放基于gru的正弦捕获网络的力量,用于精确驱动的命名实体识别。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-16 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf096
Bill Gates Happi Happi, Geraud Fokou Pelap, Danai Symeonidou, Pierre Larmande
{"title":"GRU-SCANET:释放基于gru的正弦捕获网络的力量,用于精确驱动的命名实体识别。","authors":"Bill Gates Happi Happi, Geraud Fokou Pelap, Danai Symeonidou, Pierre Larmande","doi":"10.1093/bioadv/vbaf096","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Pre-trained Language Models (PLMs) have achieved remarkable performance across various natural language processing tasks. However, they encounter challenges in biomedical named entity recognition (NER), such as high computational costs and the need for complex fine-tuning. These limitations hinder the efficient recognition of biological entities, especially within specialized corpora. To address these issues, we introduce GRU-SCANET (Gated Recurrent Unit-based Sinusoidal Capture Network), a novel architecture that directly models the relationship between input tokens and entity classes. Our approach offers a computationally efficient alternative for extracting biological entities by capturing contextual dependencies within biomedical texts.</p><p><strong>Results: </strong>GRU-SCANET combines positional encoding, bidirectional GRUs (BiGRUs), an attention-based encoder, and a conditional random field (CRF) decoder to achieve high precision in entity labeling. This design effectively mitigates the challenges posed by unbalanced data across multiple corpora. Our model consistently outperforms leading benchmarks, achieving better performance than BioBERT (8/8 evaluations), PubMedBERT (5/5 evaluations), and the previous state-of-the-art (SOTA) models (8/8 evaluations), including Bern2 (5/5 evaluations). These results highlight the strength of our approach in capturing token-entity relationships more effectively than existing methods, advancing the state of biomedicalNER.</p><p><strong>Availability and implementation: </strong>https://github.com/ANR-DIG-AI/GRU-SCANET.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf096"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198495/pdf/","citationCount":"0","resultStr":"{\"title\":\"GRU-SCANET: unleashing the power of GRU-based sinusoidal capture network for precision-driven named entity recognition.\",\"authors\":\"Bill Gates Happi Happi, Geraud Fokou Pelap, Danai Symeonidou, Pierre Larmande\",\"doi\":\"10.1093/bioadv/vbaf096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Pre-trained Language Models (PLMs) have achieved remarkable performance across various natural language processing tasks. However, they encounter challenges in biomedical named entity recognition (NER), such as high computational costs and the need for complex fine-tuning. These limitations hinder the efficient recognition of biological entities, especially within specialized corpora. To address these issues, we introduce GRU-SCANET (Gated Recurrent Unit-based Sinusoidal Capture Network), a novel architecture that directly models the relationship between input tokens and entity classes. Our approach offers a computationally efficient alternative for extracting biological entities by capturing contextual dependencies within biomedical texts.</p><p><strong>Results: </strong>GRU-SCANET combines positional encoding, bidirectional GRUs (BiGRUs), an attention-based encoder, and a conditional random field (CRF) decoder to achieve high precision in entity labeling. This design effectively mitigates the challenges posed by unbalanced data across multiple corpora. Our model consistently outperforms leading benchmarks, achieving better performance than BioBERT (8/8 evaluations), PubMedBERT (5/5 evaluations), and the previous state-of-the-art (SOTA) models (8/8 evaluations), including Bern2 (5/5 evaluations). These results highlight the strength of our approach in capturing token-entity relationships more effectively than existing methods, advancing the state of biomedicalNER.</p><p><strong>Availability and implementation: </strong>https://github.com/ANR-DIG-AI/GRU-SCANET.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf096\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:预训练语言模型(PLMs)在各种自然语言处理任务中取得了显著的成绩。然而,它们在生物医学命名实体识别(NER)中遇到了挑战,如高计算成本和需要复杂的微调。这些限制阻碍了对生物实体的有效识别,特别是在专门的语料库中。为了解决这些问题,我们引入了GRU-SCANET(基于门控循环单元的正弦捕获网络),这是一种直接模拟输入令牌和实体类之间关系的新架构。我们的方法为通过捕获生物医学文本中的上下文依赖关系来提取生物实体提供了一种计算效率高的替代方法。结果:GRU-SCANET结合了位置编码、双向gru (BiGRUs)、基于注意的编码器和条件随飞机(CRF)解码器,实现了实体标注的高精度。这种设计有效地缓解了跨多个语料库的不平衡数据带来的挑战。我们的模型始终优于领先的基准测试,实现了比BioBERT(8/8评估),PubMedBERT(5/5评估)和以前最先进的(SOTA)模型(8/8评估)更好的性能,包括Bern2(5/5评估)。这些结果突出了我们的方法在捕获令牌-实体关系方面的优势,比现有方法更有效,推进了生物医学ner的状态。可用性和实现:https://github.com/ANR-DIG-AI/GRU-SCANET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRU-SCANET: unleashing the power of GRU-based sinusoidal capture network for precision-driven named entity recognition.

Motivation: Pre-trained Language Models (PLMs) have achieved remarkable performance across various natural language processing tasks. However, they encounter challenges in biomedical named entity recognition (NER), such as high computational costs and the need for complex fine-tuning. These limitations hinder the efficient recognition of biological entities, especially within specialized corpora. To address these issues, we introduce GRU-SCANET (Gated Recurrent Unit-based Sinusoidal Capture Network), a novel architecture that directly models the relationship between input tokens and entity classes. Our approach offers a computationally efficient alternative for extracting biological entities by capturing contextual dependencies within biomedical texts.

Results: GRU-SCANET combines positional encoding, bidirectional GRUs (BiGRUs), an attention-based encoder, and a conditional random field (CRF) decoder to achieve high precision in entity labeling. This design effectively mitigates the challenges posed by unbalanced data across multiple corpora. Our model consistently outperforms leading benchmarks, achieving better performance than BioBERT (8/8 evaluations), PubMedBERT (5/5 evaluations), and the previous state-of-the-art (SOTA) models (8/8 evaluations), including Bern2 (5/5 evaluations). These results highlight the strength of our approach in capturing token-entity relationships more effectively than existing methods, advancing the state of biomedicalNER.

Availability and implementation: https://github.com/ANR-DIG-AI/GRU-SCANET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信