{"title":"旋转对称度量的宽度稳定性。","authors":"Hunter Stufflebeam, Paul Sweeney","doi":"10.1007/s12220-025-02020-5","DOIUrl":null,"url":null,"abstract":"<p><p>In 2018, Marques and Neves proposed a volume preserving intrinsic flat stability conjecture concerning their width rigidity theorem for the unit round 3-sphere. In this work, we establish the validity of this conjecture under the additional assumption of rotational symmetry. Furthermore, we obtain a rigidity theorem in dimensions at least three for rotationally symmetric manifolds, which is analogous to the width rigidity theorem of Marques and Neves. We also prove a volume preserving intrinsic flat stability result for this rigidity theorem. Lastly, we study variants of Marques and Neves' stability conjecture. In the first, we show Gromov-Hausdorff convergence outside of certain \"bad\" sets. In the second, we assume non-negative Ricci curvature and show Gromov-Hausdorff stability.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 8","pages":"238"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187838/pdf/","citationCount":"0","resultStr":"{\"title\":\"Width Stability of Rotationally Symmetric Metrics.\",\"authors\":\"Hunter Stufflebeam, Paul Sweeney\",\"doi\":\"10.1007/s12220-025-02020-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2018, Marques and Neves proposed a volume preserving intrinsic flat stability conjecture concerning their width rigidity theorem for the unit round 3-sphere. In this work, we establish the validity of this conjecture under the additional assumption of rotational symmetry. Furthermore, we obtain a rigidity theorem in dimensions at least three for rotationally symmetric manifolds, which is analogous to the width rigidity theorem of Marques and Neves. We also prove a volume preserving intrinsic flat stability result for this rigidity theorem. Lastly, we study variants of Marques and Neves' stability conjecture. In the first, we show Gromov-Hausdorff convergence outside of certain \\\"bad\\\" sets. In the second, we assume non-negative Ricci curvature and show Gromov-Hausdorff stability.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 8\",\"pages\":\"238\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-025-02020-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-02020-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Width Stability of Rotationally Symmetric Metrics.
In 2018, Marques and Neves proposed a volume preserving intrinsic flat stability conjecture concerning their width rigidity theorem for the unit round 3-sphere. In this work, we establish the validity of this conjecture under the additional assumption of rotational symmetry. Furthermore, we obtain a rigidity theorem in dimensions at least three for rotationally symmetric manifolds, which is analogous to the width rigidity theorem of Marques and Neves. We also prove a volume preserving intrinsic flat stability result for this rigidity theorem. Lastly, we study variants of Marques and Neves' stability conjecture. In the first, we show Gromov-Hausdorff convergence outside of certain "bad" sets. In the second, we assume non-negative Ricci curvature and show Gromov-Hausdorff stability.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.