Richard Noll, Alexandra Berger, Carlo Facchinello, Katharina Stratmann, Jannik Schaaf, Holger Storf
{"title":"利用基于案例的推理提高罕见病的诊断精度。","authors":"Richard Noll, Alexandra Berger, Carlo Facchinello, Katharina Stratmann, Jannik Schaaf, Holger Storf","doi":"10.1093/jamia/ocaf092","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to enhance the diagnostic process for rare diseases using case-based reasoning (CBR). CBR compares new cases with historical data, utilizing both structured and unstructured clinical data.</p><p><strong>Materials and methods: </strong>The study uses a dataset of 4295 patient cases from the University Hospital Frankfurt. Data were standardized using the OMOP Common Data Model. Three methods-TF, TF-IDF, and TF-IDF with semantic vector embeddings-were employed to represent patient records. Similarity search effectiveness was evaluated using cross-validation to assess diagnostic precision. High-weighted concepts were rated by medical experts for relevance. Additionally, the impact of different levels of ICD-10 code granularity on prediction outcomes was analyzed.</p><p><strong>Results: </strong>The TF-IDF method showed a high degree of precision, with an average positive predictive value of 91% in the 10 most similar cases. The differences between the methods were not statistically significant. The expert evaluation rated the medical relevance of high-weighted concepts as moderate. The granularity of ICD-10 coding significantly influences the precision of predictions, with more granular codes showing decreased precision.</p><p><strong>Discussion: </strong>The methods effectively handle data from multiple medical specialties, suggesting broad applicability. The use of broader ICD-10 codes with high precision in prediction could improve initial diagnostic guidance. The use of Explainable AI could enhance diagnostic transparency, leading to better patient outcomes. Limitations include standardization issues and the need for more comprehensive lab value integration.</p><p><strong>Conclusion: </strong>While CBR shows promise for rare disease diagnostics, its utility depends on the specific needs of the decision support system and its intended clinical application.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing diagnostic precision for rare diseases using case-based reasoning.\",\"authors\":\"Richard Noll, Alexandra Berger, Carlo Facchinello, Katharina Stratmann, Jannik Schaaf, Holger Storf\",\"doi\":\"10.1093/jamia/ocaf092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to enhance the diagnostic process for rare diseases using case-based reasoning (CBR). CBR compares new cases with historical data, utilizing both structured and unstructured clinical data.</p><p><strong>Materials and methods: </strong>The study uses a dataset of 4295 patient cases from the University Hospital Frankfurt. Data were standardized using the OMOP Common Data Model. Three methods-TF, TF-IDF, and TF-IDF with semantic vector embeddings-were employed to represent patient records. Similarity search effectiveness was evaluated using cross-validation to assess diagnostic precision. High-weighted concepts were rated by medical experts for relevance. Additionally, the impact of different levels of ICD-10 code granularity on prediction outcomes was analyzed.</p><p><strong>Results: </strong>The TF-IDF method showed a high degree of precision, with an average positive predictive value of 91% in the 10 most similar cases. The differences between the methods were not statistically significant. The expert evaluation rated the medical relevance of high-weighted concepts as moderate. The granularity of ICD-10 coding significantly influences the precision of predictions, with more granular codes showing decreased precision.</p><p><strong>Discussion: </strong>The methods effectively handle data from multiple medical specialties, suggesting broad applicability. The use of broader ICD-10 codes with high precision in prediction could improve initial diagnostic guidance. The use of Explainable AI could enhance diagnostic transparency, leading to better patient outcomes. Limitations include standardization issues and the need for more comprehensive lab value integration.</p><p><strong>Conclusion: </strong>While CBR shows promise for rare disease diagnostics, its utility depends on the specific needs of the decision support system and its intended clinical application.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocaf092\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Enhancing diagnostic precision for rare diseases using case-based reasoning.
Objective: This study aims to enhance the diagnostic process for rare diseases using case-based reasoning (CBR). CBR compares new cases with historical data, utilizing both structured and unstructured clinical data.
Materials and methods: The study uses a dataset of 4295 patient cases from the University Hospital Frankfurt. Data were standardized using the OMOP Common Data Model. Three methods-TF, TF-IDF, and TF-IDF with semantic vector embeddings-were employed to represent patient records. Similarity search effectiveness was evaluated using cross-validation to assess diagnostic precision. High-weighted concepts were rated by medical experts for relevance. Additionally, the impact of different levels of ICD-10 code granularity on prediction outcomes was analyzed.
Results: The TF-IDF method showed a high degree of precision, with an average positive predictive value of 91% in the 10 most similar cases. The differences between the methods were not statistically significant. The expert evaluation rated the medical relevance of high-weighted concepts as moderate. The granularity of ICD-10 coding significantly influences the precision of predictions, with more granular codes showing decreased precision.
Discussion: The methods effectively handle data from multiple medical specialties, suggesting broad applicability. The use of broader ICD-10 codes with high precision in prediction could improve initial diagnostic guidance. The use of Explainable AI could enhance diagnostic transparency, leading to better patient outcomes. Limitations include standardization issues and the need for more comprehensive lab value integration.
Conclusion: While CBR shows promise for rare disease diagnostics, its utility depends on the specific needs of the decision support system and its intended clinical application.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.