联合网络药理学、转录组学和代谢组学策略揭示浪创丸改善MRL/lpr小鼠狼疮性肾炎的作用机制

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-06-18 DOI:10.3390/ph18060916
Cuicui Li, Guoxin Ji, Xinru Zhang, Hang Yu, Zhimeng Li, Bo Yang, Zhuangzhuang Yao, Shilei Wang, Tongwei Jiang, Shumin Wang
{"title":"联合网络药理学、转录组学和代谢组学策略揭示浪创丸改善MRL/lpr小鼠狼疮性肾炎的作用机制","authors":"Cuicui Li, Guoxin Ji, Xinru Zhang, Hang Yu, Zhimeng Li, Bo Yang, Zhuangzhuang Yao, Shilei Wang, Tongwei Jiang, Shumin Wang","doi":"10.3390/ph18060916","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism of action have not been elucidated. To address this, we aim to analyze LCW's chemical components and clarify its mechanisms in treating LN. <b>Methods</b>: We utilized ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the components of LCW and assessed its effects on MRL/lpr mice through ELISA, H&E staining, Masson's trichrome staining, and IgG immunofluorescence. Then, we further explored the mechanisms of action through network pharmacology, transcriptomics, and metabolomics, and validated with Western blot. <b>Results</b>: LCW contained 1303 chemical components, primarily flavonoids and terpenoids. It significantly improved kidney pathology and normalized levels of serum ANA, anti-dsDNA, anti-Sm, C3, C4, Cr, BUN, IL-6, IL-10, IL-17, TNF-α, and urinary protein (UP) in MRL/lpr mice. Network pharmacology, transcriptomics, and metabolomics indicated that LCW's therapeutic effect on LN involved the PI3K/AKT pathway, confirmed by Western blot showing LCW's suppression of the PI3K/AKT/mTOR pathway. <b>Conclusions</b>: LCW alleviates pathological symptoms in MRL/lpr mice by inhibiting the PI3K/AKT/mTOR signaling pathway, providing insights into its therapeutic mechanisms for lupus nephritis.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined Network Pharmacology, Transcriptomics and Metabolomics Strategies Reveal the Mechanism of Action of Lang Chuang Wan to Ameliorate Lupus Nephritis in MRL/lpr Mice.\",\"authors\":\"Cuicui Li, Guoxin Ji, Xinru Zhang, Hang Yu, Zhimeng Li, Bo Yang, Zhuangzhuang Yao, Shilei Wang, Tongwei Jiang, Shumin Wang\",\"doi\":\"10.3390/ph18060916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism of action have not been elucidated. To address this, we aim to analyze LCW's chemical components and clarify its mechanisms in treating LN. <b>Methods</b>: We utilized ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the components of LCW and assessed its effects on MRL/lpr mice through ELISA, H&E staining, Masson's trichrome staining, and IgG immunofluorescence. Then, we further explored the mechanisms of action through network pharmacology, transcriptomics, and metabolomics, and validated with Western blot. <b>Results</b>: LCW contained 1303 chemical components, primarily flavonoids and terpenoids. It significantly improved kidney pathology and normalized levels of serum ANA, anti-dsDNA, anti-Sm, C3, C4, Cr, BUN, IL-6, IL-10, IL-17, TNF-α, and urinary protein (UP) in MRL/lpr mice. Network pharmacology, transcriptomics, and metabolomics indicated that LCW's therapeutic effect on LN involved the PI3K/AKT pathway, confirmed by Western blot showing LCW's suppression of the PI3K/AKT/mTOR pathway. <b>Conclusions</b>: LCW alleviates pathological symptoms in MRL/lpr mice by inhibiting the PI3K/AKT/mTOR signaling pathway, providing insights into its therapeutic mechanisms for lupus nephritis.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph18060916\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18060916","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:狼疮性肾炎(LN)是系统性红斑狼疮(SLE)的严重并发症,且难以治愈。郎创丸(Lang创丸,LCW)作为SLE和LN的治疗已广泛应用于临床,但其有效成分和作用机制尚未阐明。为了解决这个问题,我们旨在分析LCW的化学成分并阐明其治疗LN的机制。方法:采用超高效液相色谱-串联质谱法(UPLC-MS/MS)对LCW进行成分分析,并通过ELISA、H&E染色、Masson三色染色、IgG免疫荧光等方法评价其对MRL/lpr小鼠的作用。然后,我们通过网络药理学、转录组学和代谢组学进一步探索其作用机制,并通过Western blot验证。结果:枸杞中含有1303种化学成分,主要为黄酮类和萜类。它显著改善了MRL/lpr小鼠的肾脏病理,并使血清ANA、抗dsdna、抗sm、C3、C4、Cr、BUN、IL-6、IL-10、IL-17、TNF-α和尿蛋白(UP)水平正常化。网络药理学、转录组学和代谢组学表明,LCW对LN的治疗作用涉及PI3K/AKT通路,Western blot证实LCW抑制PI3K/AKT/mTOR通路。结论:LCW通过抑制PI3K/AKT/mTOR信号通路减轻MRL/lpr小鼠的病理症状,揭示其治疗狼疮性肾炎的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined Network Pharmacology, Transcriptomics and Metabolomics Strategies Reveal the Mechanism of Action of Lang Chuang Wan to Ameliorate Lupus Nephritis in MRL/lpr Mice.

Background: Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and is difficult to cure. Lang Chuang Wan (LCW) has been widely used in clinical practice as a treatment for SLE and LN, but its active ingredients and mechanism of action have not been elucidated. To address this, we aim to analyze LCW's chemical components and clarify its mechanisms in treating LN. Methods: We utilized ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the components of LCW and assessed its effects on MRL/lpr mice through ELISA, H&E staining, Masson's trichrome staining, and IgG immunofluorescence. Then, we further explored the mechanisms of action through network pharmacology, transcriptomics, and metabolomics, and validated with Western blot. Results: LCW contained 1303 chemical components, primarily flavonoids and terpenoids. It significantly improved kidney pathology and normalized levels of serum ANA, anti-dsDNA, anti-Sm, C3, C4, Cr, BUN, IL-6, IL-10, IL-17, TNF-α, and urinary protein (UP) in MRL/lpr mice. Network pharmacology, transcriptomics, and metabolomics indicated that LCW's therapeutic effect on LN involved the PI3K/AKT pathway, confirmed by Western blot showing LCW's suppression of the PI3K/AKT/mTOR pathway. Conclusions: LCW alleviates pathological symptoms in MRL/lpr mice by inhibiting the PI3K/AKT/mTOR signaling pathway, providing insights into its therapeutic mechanisms for lupus nephritis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信