基于稀疏混合整数规划和非凸通量图优化的IMRT波束定向优化。

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yang Lei, Jiahan Zhang, Kaida Yang, Shouyi Wei, Ruirui Liu, Yabo Fu, Yu Lei, Haibo Lin, Charles B Simone, Kenneth Rosenzweig, Tian Liu
{"title":"基于稀疏混合整数规划和非凸通量图优化的IMRT波束定向优化。","authors":"Yang Lei, Jiahan Zhang, Kaida Yang, Shouyi Wei, Ruirui Liu, Yabo Fu, Yu Lei, Haibo Lin, Charles B Simone, Kenneth Rosenzweig, Tian Liu","doi":"10.1088/1361-6560/ade8ce","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is a complex, non-convex problem traditionally addressed with heuristic methods.<i>Approach.</i>This work demonstrates the potential improvement of the proposed BOO, providing a mathematically grounded benchmark that can guide and validate heuristic BOO methods, while also offering a computationally efficient workflow suitable for clinical application. A novel framework integrating second-order cone programming (SOCP) relaxation, sparse mixed integer programming (SMIP), and deep inverse optimization is proposed. Nonconvex dose-volume constraints were managed via SOCP relaxation, ensuring convexity while maintaining sparsity. BOO was formulated as an SMIP problem with binary beam selection, solved using an augmented Lagrange method. To accelerate optimization, a neural network approximated optimal solution, improving computational efficiency eightfold. A retrospective analysis of 12 locally advanced non-small cell lung cancer (NSCLC) patients (60 Gy prescription) compared automated BOO-selected beam angles with expert selections, evaluating dosimetric metrics such as planning target volume (PTV) maximum dose, D98%, lung V20, and mean heart and esophagus dose.<i>Main results.</i>In 12 retrospective study, the automated BOO demonstrated superior dose conformity and sparing of critical structures. Specifically, the BOO plans achieved comparable PTV coverage (maximum: 61.7 ± 1.4 Gy vs. 62.1 ± 1.5 Gy, D98%: 59.5 ± 0.7 Gy vs. 59.5 ± 0.6 Gy, D2%: 61.2 ± 1.3 Gy vs. 61.4 ± 1.4 Gy with<i>p</i>-values >0.5) but demonstrated improved sparing for lungs (V20: 9.8 ± 2.2% vs. 11.5 ± 2.3%,<i>p</i>-value: 0.01), heart (mean: 3.3 ± 0.6 Gy vs. 4.3 ± 0.5 Gy,<i>p</i>-value: 0.04), esophagus (mean: 0.5 ± 1.3 Gy vs. 1.8 ± 1.5 Gy,<i>p</i>-value: 0.02), and spinal cord (max: 7.2 ± 3.4 Gy vs. 9.0 ± 3.2 Gy,<i>p</i>-value < 0.01) compared to human-selected plans.<i>Significance.</i>This approach highlighted the potential of BOO to enhance treatment efficacy by optimizing beam angles more effectively than manual selection. This framework establishes a benchmark for BOO in IMRT, enhancing heuristic methods through a hybrid framework that combines mathematical optimization with targeted heuristics to improve solution quality and computational efficiency. The integration of SMIP and deep inverse optimization significantly improves computational efficiency and plan quality.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam orientation optimization in IMRT using sparse mixed integer programming and non-convex fluence map optimization.\",\"authors\":\"Yang Lei, Jiahan Zhang, Kaida Yang, Shouyi Wei, Ruirui Liu, Yabo Fu, Yu Lei, Haibo Lin, Charles B Simone, Kenneth Rosenzweig, Tian Liu\",\"doi\":\"10.1088/1361-6560/ade8ce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is a complex, non-convex problem traditionally addressed with heuristic methods.<i>Approach.</i>This work demonstrates the potential improvement of the proposed BOO, providing a mathematically grounded benchmark that can guide and validate heuristic BOO methods, while also offering a computationally efficient workflow suitable for clinical application. A novel framework integrating second-order cone programming (SOCP) relaxation, sparse mixed integer programming (SMIP), and deep inverse optimization is proposed. Nonconvex dose-volume constraints were managed via SOCP relaxation, ensuring convexity while maintaining sparsity. BOO was formulated as an SMIP problem with binary beam selection, solved using an augmented Lagrange method. To accelerate optimization, a neural network approximated optimal solution, improving computational efficiency eightfold. A retrospective analysis of 12 locally advanced non-small cell lung cancer (NSCLC) patients (60 Gy prescription) compared automated BOO-selected beam angles with expert selections, evaluating dosimetric metrics such as planning target volume (PTV) maximum dose, D98%, lung V20, and mean heart and esophagus dose.<i>Main results.</i>In 12 retrospective study, the automated BOO demonstrated superior dose conformity and sparing of critical structures. Specifically, the BOO plans achieved comparable PTV coverage (maximum: 61.7 ± 1.4 Gy vs. 62.1 ± 1.5 Gy, D98%: 59.5 ± 0.7 Gy vs. 59.5 ± 0.6 Gy, D2%: 61.2 ± 1.3 Gy vs. 61.4 ± 1.4 Gy with<i>p</i>-values >0.5) but demonstrated improved sparing for lungs (V20: 9.8 ± 2.2% vs. 11.5 ± 2.3%,<i>p</i>-value: 0.01), heart (mean: 3.3 ± 0.6 Gy vs. 4.3 ± 0.5 Gy,<i>p</i>-value: 0.04), esophagus (mean: 0.5 ± 1.3 Gy vs. 1.8 ± 1.5 Gy,<i>p</i>-value: 0.02), and spinal cord (max: 7.2 ± 3.4 Gy vs. 9.0 ± 3.2 Gy,<i>p</i>-value < 0.01) compared to human-selected plans.<i>Significance.</i>This approach highlighted the potential of BOO to enhance treatment efficacy by optimizing beam angles more effectively than manual selection. This framework establishes a benchmark for BOO in IMRT, enhancing heuristic methods through a hybrid framework that combines mathematical optimization with targeted heuristics to improve solution quality and computational efficiency. The integration of SMIP and deep inverse optimization significantly improves computational efficiency and plan quality.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ade8ce\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ade8ce","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:调强放疗(IMRT)中的光束定向优化(BOO)是一个复杂的非凸问题,传统上用启发式方法解决。方法:这项工作证明了所提出的BOO的潜在改进,提供了一个数学基础基准,可以指导和验证启发式BOO方法,同时也提供了一个适合临床应用的计算效率高的工作流程。提出了一种集二阶锥规划(SOCP)松弛、稀疏混合整数规划(SMIP)和深度逆优化于一体的新框架。通过SOCP松弛来管理非凸剂量-体积约束,在保持稀疏性的同时确保凸性。BOO被表述为具有二进制光束选择的SMIP问题,使用增广拉格朗日方法求解。为了加速优化,神经网络逼近最优解,将计算效率提高了8倍。回顾性分析了12例局部晚期非小细胞肺癌(NSCLC)患者(处方60 Gy),比较了自动BOO选择的光束角度与专家选择的光束角度,评估了计划靶体积(PTV)最大剂量、D98%、肺V20和心脏和食管平均剂量等剂量学指标。主要结果:在12项回顾性研究中,自动BOO显示出更好的剂量一致性和对关键结构的保护。具体来说,BOO方案实现了相当的PTV覆盖(最大:61.7±1.4Gy vs. 62.1±1.5Gy, D98%: 59.5±0.7Gy vs. 59.5±0.6Gy, D2%: 61.2±1.3Gy vs. 61.4±1.4Gy),但与人类选择的方案相比,肺部(V20: 9.8±2.2% vs. 11.5±2.3%)、心脏(平均:3.3±0.6Gy vs. 4.3±0.5 gy)、食道(平均:0.5±1.3Gy vs. 1.8±1.5Gy)和脊髓(最大:7.2±3.4Gy vs. 9.0±3.2Gy)的保护得到了改善。意义:该方法强调了BOO通过优化光束角度比人工选择更有效地提高治疗效果的潜力。该框架为IMRT中的BOO建立了基准,通过将数学优化与目标启发式相结合的混合框架增强了启发式方法,以提高解的质量和计算效率。SMIP和深度逆优化的集成显著提高了计算效率和规划质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beam orientation optimization in IMRT using sparse mixed integer programming and non-convex fluence map optimization.

Objective.Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is a complex, non-convex problem traditionally addressed with heuristic methods.Approach.This work demonstrates the potential improvement of the proposed BOO, providing a mathematically grounded benchmark that can guide and validate heuristic BOO methods, while also offering a computationally efficient workflow suitable for clinical application. A novel framework integrating second-order cone programming (SOCP) relaxation, sparse mixed integer programming (SMIP), and deep inverse optimization is proposed. Nonconvex dose-volume constraints were managed via SOCP relaxation, ensuring convexity while maintaining sparsity. BOO was formulated as an SMIP problem with binary beam selection, solved using an augmented Lagrange method. To accelerate optimization, a neural network approximated optimal solution, improving computational efficiency eightfold. A retrospective analysis of 12 locally advanced non-small cell lung cancer (NSCLC) patients (60 Gy prescription) compared automated BOO-selected beam angles with expert selections, evaluating dosimetric metrics such as planning target volume (PTV) maximum dose, D98%, lung V20, and mean heart and esophagus dose.Main results.In 12 retrospective study, the automated BOO demonstrated superior dose conformity and sparing of critical structures. Specifically, the BOO plans achieved comparable PTV coverage (maximum: 61.7 ± 1.4 Gy vs. 62.1 ± 1.5 Gy, D98%: 59.5 ± 0.7 Gy vs. 59.5 ± 0.6 Gy, D2%: 61.2 ± 1.3 Gy vs. 61.4 ± 1.4 Gy withp-values >0.5) but demonstrated improved sparing for lungs (V20: 9.8 ± 2.2% vs. 11.5 ± 2.3%,p-value: 0.01), heart (mean: 3.3 ± 0.6 Gy vs. 4.3 ± 0.5 Gy,p-value: 0.04), esophagus (mean: 0.5 ± 1.3 Gy vs. 1.8 ± 1.5 Gy,p-value: 0.02), and spinal cord (max: 7.2 ± 3.4 Gy vs. 9.0 ± 3.2 Gy,p-value < 0.01) compared to human-selected plans.Significance.This approach highlighted the potential of BOO to enhance treatment efficacy by optimizing beam angles more effectively than manual selection. This framework establishes a benchmark for BOO in IMRT, enhancing heuristic methods through a hybrid framework that combines mathematical optimization with targeted heuristics to improve solution quality and computational efficiency. The integration of SMIP and deep inverse optimization significantly improves computational efficiency and plan quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信