{"title":"建模与平衡方法来解决加权中的工具变量:结果自适应套索,稳定平衡加权和稳定混杂选择的比较。","authors":"Byeong Yeob Choi, M Alan Brookhart","doi":"10.1002/pds.70173","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Variable selection is essential for propensity score (PS)-weighted estimators. Recent work shows that including instrumental variables (IVs), associated with only treatment but not with the outcome, can impact both the bias and precision of the PS-weighted estimators.</p><p><strong>Methods: </strong>The outcome-adaptive lasso (OAL) is an innovative model-based method adapting the popular adaptive lasso variable selection to causal inference. It attempts to identify IVs, so one can exclude them from the PS model. Unlike the model-based approach, stable balancing weighting (SBW) estimates inverse probability weights directly while minimizing the variance of the weights and covariate imbalance simultaneously. Based on its variance optimization algorithm, SBW may provide some protection against the impact of IVs. Lastly, we considered stable confounder selection (SCS), which assesses the stability of model-based effect estimates.</p><p><strong>Results: </strong>The authors present the results of simulation studies to investigate which method performs the best when moderate or strong IVs are used. The simulation studies consider IVs and spurious variables to generate extreme PSs. In simulations, SBW generally outperformed OAL and SCS in terms of reducing mean squared error, notably when the IVs were strong, and many covariates were highly correlated. Our empirical application to the effect of abciximab treatment demonstrates that SBW is a robust method to effectively handle limited overlap.</p><p><strong>Conclusions: </strong>Our numerical results support the use of SBW in situations where IVs or near-IVs may lead to practical violations of positivity assumptions.</p>","PeriodicalId":19782,"journal":{"name":"Pharmacoepidemiology and Drug Safety","volume":"34 7","pages":"e70173"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling Versus Balancing Approaches to Addressing Instrumental Variables in Weighting: A Comparison of the Outcome-Adaptive Lasso, Stable Balancing Weighting, and Stable Confounder Selection.\",\"authors\":\"Byeong Yeob Choi, M Alan Brookhart\",\"doi\":\"10.1002/pds.70173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Variable selection is essential for propensity score (PS)-weighted estimators. Recent work shows that including instrumental variables (IVs), associated with only treatment but not with the outcome, can impact both the bias and precision of the PS-weighted estimators.</p><p><strong>Methods: </strong>The outcome-adaptive lasso (OAL) is an innovative model-based method adapting the popular adaptive lasso variable selection to causal inference. It attempts to identify IVs, so one can exclude them from the PS model. Unlike the model-based approach, stable balancing weighting (SBW) estimates inverse probability weights directly while minimizing the variance of the weights and covariate imbalance simultaneously. Based on its variance optimization algorithm, SBW may provide some protection against the impact of IVs. Lastly, we considered stable confounder selection (SCS), which assesses the stability of model-based effect estimates.</p><p><strong>Results: </strong>The authors present the results of simulation studies to investigate which method performs the best when moderate or strong IVs are used. The simulation studies consider IVs and spurious variables to generate extreme PSs. In simulations, SBW generally outperformed OAL and SCS in terms of reducing mean squared error, notably when the IVs were strong, and many covariates were highly correlated. Our empirical application to the effect of abciximab treatment demonstrates that SBW is a robust method to effectively handle limited overlap.</p><p><strong>Conclusions: </strong>Our numerical results support the use of SBW in situations where IVs or near-IVs may lead to practical violations of positivity assumptions.</p>\",\"PeriodicalId\":19782,\"journal\":{\"name\":\"Pharmacoepidemiology and Drug Safety\",\"volume\":\"34 7\",\"pages\":\"e70173\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacoepidemiology and Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pds.70173\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacoepidemiology and Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pds.70173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Modeling Versus Balancing Approaches to Addressing Instrumental Variables in Weighting: A Comparison of the Outcome-Adaptive Lasso, Stable Balancing Weighting, and Stable Confounder Selection.
Background: Variable selection is essential for propensity score (PS)-weighted estimators. Recent work shows that including instrumental variables (IVs), associated with only treatment but not with the outcome, can impact both the bias and precision of the PS-weighted estimators.
Methods: The outcome-adaptive lasso (OAL) is an innovative model-based method adapting the popular adaptive lasso variable selection to causal inference. It attempts to identify IVs, so one can exclude them from the PS model. Unlike the model-based approach, stable balancing weighting (SBW) estimates inverse probability weights directly while minimizing the variance of the weights and covariate imbalance simultaneously. Based on its variance optimization algorithm, SBW may provide some protection against the impact of IVs. Lastly, we considered stable confounder selection (SCS), which assesses the stability of model-based effect estimates.
Results: The authors present the results of simulation studies to investigate which method performs the best when moderate or strong IVs are used. The simulation studies consider IVs and spurious variables to generate extreme PSs. In simulations, SBW generally outperformed OAL and SCS in terms of reducing mean squared error, notably when the IVs were strong, and many covariates were highly correlated. Our empirical application to the effect of abciximab treatment demonstrates that SBW is a robust method to effectively handle limited overlap.
Conclusions: Our numerical results support the use of SBW in situations where IVs or near-IVs may lead to practical violations of positivity assumptions.
期刊介绍:
The aim of Pharmacoepidemiology and Drug Safety is to provide an international forum for the communication and evaluation of data, methods and opinion in the discipline of pharmacoepidemiology. The Journal publishes peer-reviewed reports of original research, invited reviews and a variety of guest editorials and commentaries embracing scientific, medical, statistical, legal and economic aspects of pharmacoepidemiology and post-marketing surveillance of drug safety. Appropriate material in these categories may also be considered for publication as a Brief Report.
Particular areas of interest include:
design, analysis, results, and interpretation of studies looking at the benefit or safety of specific pharmaceuticals, biologics, or medical devices, including studies in pharmacovigilance, postmarketing surveillance, pharmacoeconomics, patient safety, molecular pharmacoepidemiology, or any other study within the broad field of pharmacoepidemiology;
comparative effectiveness research relating to pharmaceuticals, biologics, and medical devices. Comparative effectiveness research is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition, as these methods are truly used in the real world;
methodologic contributions of relevance to pharmacoepidemiology, whether original contributions, reviews of existing methods, or tutorials for how to apply the methods of pharmacoepidemiology;
assessments of harm versus benefit in drug therapy;
patterns of drug utilization;
relationships between pharmacoepidemiology and the formulation and interpretation of regulatory guidelines;
evaluations of risk management plans and programmes relating to pharmaceuticals, biologics and medical devices.