Katrina DeWitt, Alyssa A Carrell, Jennifer D Rocca, Samantha Votzke, Andrea Yammine, Ariane L Peralta, David J Weston, Dale A Pelletier, Jean P Gibert
{"title":"纤毛虫群落的捕食对泥炭地猎物原核生物群落的温度和营养影响起调节作用。","authors":"Katrina DeWitt, Alyssa A Carrell, Jennifer D Rocca, Samantha Votzke, Andrea Yammine, Ariane L Peralta, David J Weston, Dale A Pelletier, Jean P Gibert","doi":"10.1128/msphere.00309-25","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature significantly impacts microbial communities' composition and function, which plays a vital role in the global carbon cycle that determines climate change. Nutrient influxes often accompany rising temperatures due to human activity. While ecological interactions between different microorganisms could shape their response to environmental change, we do not understand how predation may influence these responses in a warmer and increasingly nutrient-rich world. Here, we assess whether predation by a ciliate community of bacterial consumers influences changes in the diversity, biomass, and function of a freshwater prokaryotic community under different temperature and nutrient conditions. We found that predator presence mediates the effects of temperature and nutrients on the total prokaryotic community biomass and composition through various mechanisms, including direct and indirect effects. However, the total community function was resilient. Our study supports previous findings that temperature and nutrients are essential drivers of microbial community composition and function but also demonstrates how predation can mediate these effects, indicating that the biotic context is as important as the abiotic context to understanding microbial responses to novel climates.IMPORTANCEWhile the importance of the abiotic environment in microbial communities has long been acknowledged, how prevalent ecological interactions like predation may influence these microbial community responses to shifting abiotic conditions is largely unknown. Our study addresses the complex interplay between temperature, nutrients, predation, and their joint effects on microbial community diversity and function. Our findings suggest that while temperature and nutrients are fundamental drivers of microbial community dynamics, the presence of predators significantly alters these responses. Our study underscores the impact of abiotic factors on microbial communities and the importance of accounting for the biotic context in which these occur to understand, let alone predict, these responses properly.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0030925"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community.\",\"authors\":\"Katrina DeWitt, Alyssa A Carrell, Jennifer D Rocca, Samantha Votzke, Andrea Yammine, Ariane L Peralta, David J Weston, Dale A Pelletier, Jean P Gibert\",\"doi\":\"10.1128/msphere.00309-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature significantly impacts microbial communities' composition and function, which plays a vital role in the global carbon cycle that determines climate change. Nutrient influxes often accompany rising temperatures due to human activity. While ecological interactions between different microorganisms could shape their response to environmental change, we do not understand how predation may influence these responses in a warmer and increasingly nutrient-rich world. Here, we assess whether predation by a ciliate community of bacterial consumers influences changes in the diversity, biomass, and function of a freshwater prokaryotic community under different temperature and nutrient conditions. We found that predator presence mediates the effects of temperature and nutrients on the total prokaryotic community biomass and composition through various mechanisms, including direct and indirect effects. However, the total community function was resilient. Our study supports previous findings that temperature and nutrients are essential drivers of microbial community composition and function but also demonstrates how predation can mediate these effects, indicating that the biotic context is as important as the abiotic context to understanding microbial responses to novel climates.IMPORTANCEWhile the importance of the abiotic environment in microbial communities has long been acknowledged, how prevalent ecological interactions like predation may influence these microbial community responses to shifting abiotic conditions is largely unknown. Our study addresses the complex interplay between temperature, nutrients, predation, and their joint effects on microbial community diversity and function. Our findings suggest that while temperature and nutrients are fundamental drivers of microbial community dynamics, the presence of predators significantly alters these responses. Our study underscores the impact of abiotic factors on microbial communities and the importance of accounting for the biotic context in which these occur to understand, let alone predict, these responses properly.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0030925\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00309-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00309-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Predation by a ciliate community mediates temperature and nutrient effects on a peatland prey prokaryotic community.
Temperature significantly impacts microbial communities' composition and function, which plays a vital role in the global carbon cycle that determines climate change. Nutrient influxes often accompany rising temperatures due to human activity. While ecological interactions between different microorganisms could shape their response to environmental change, we do not understand how predation may influence these responses in a warmer and increasingly nutrient-rich world. Here, we assess whether predation by a ciliate community of bacterial consumers influences changes in the diversity, biomass, and function of a freshwater prokaryotic community under different temperature and nutrient conditions. We found that predator presence mediates the effects of temperature and nutrients on the total prokaryotic community biomass and composition through various mechanisms, including direct and indirect effects. However, the total community function was resilient. Our study supports previous findings that temperature and nutrients are essential drivers of microbial community composition and function but also demonstrates how predation can mediate these effects, indicating that the biotic context is as important as the abiotic context to understanding microbial responses to novel climates.IMPORTANCEWhile the importance of the abiotic environment in microbial communities has long been acknowledged, how prevalent ecological interactions like predation may influence these microbial community responses to shifting abiotic conditions is largely unknown. Our study addresses the complex interplay between temperature, nutrients, predation, and their joint effects on microbial community diversity and function. Our findings suggest that while temperature and nutrients are fundamental drivers of microbial community dynamics, the presence of predators significantly alters these responses. Our study underscores the impact of abiotic factors on microbial communities and the importance of accounting for the biotic context in which these occur to understand, let alone predict, these responses properly.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.