整合比较基因组学和风险分类,通过评估毒力、抗菌素耐药性和质粒在微生物群落中的传播。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Jonas Coelho Kasmanas, Stefanía Magnúsdóttir, Junya Zhang, Kornelia Smalla, Michael Schloter, Peter F Stadler, André Carlos Ponce de Leon Ferreira de Carvalho, Ulisses Rocha
{"title":"整合比较基因组学和风险分类,通过评估毒力、抗菌素耐药性和质粒在微生物群落中的传播。","authors":"Jonas Coelho Kasmanas, Stefanía Magnúsdóttir, Junya Zhang, Kornelia Smalla, Michael Schloter, Peter F Stadler, André Carlos Ponce de Leon Ferreira de Carvalho, Ulisses Rocha","doi":"10.1093/gigascience/giaf072","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Comparative genomics, genetic spread analysis, and context-aware ranking are crucial in understanding microbial dynamics' impact on public health. gSpreadComp streamlines the path from in silico analysis to hypothesis generation. By integrating comparative genomics, genome annotation, normalization, plasmid-mediated gene transfer, and microbial resistance-virulence risk-ranking into a unified workflow, gSpreadComp facilitates hypothesis generation from complex microbial datasets.</p><p><strong>Findings: </strong>The gSpreadComp workflow works through 6 modular steps: taxonomy assignment, genome quality estimation, antimicrobial resistance (AMR) gene annotation, plasmid/chromosome classification, virulence factor annotation, and downstream analysis. Our workflow calculates gene spread using normalized weighted average prevalence and ranks potential resistance-virulence risk by integrating microbial resistance, virulence, and plasmid transmissibility data and producing an HTML report. As a use case, we analyzed 3,566 metagenome-assembled genomes recovered from human gut microbiomes across diets. Our findings indicated consistent AMR across diets, with diet-specific resistance patterns, such as increased bacitracin in vegans and tetracycline in omnivores. Notably, ketogenic diets showed a slightly higher resistance-virulence rank, while vegan and vegetarian diets encompassed more plasmid-mediated gene transfer.</p><p><strong>Conclusions: </strong>The gSpreadComp workflow aims to facilitate hypothesis generation for targeted experimental validations by the identification of concerning resistant hotspots in complex microbial datasets. Our study raises attention to a more thorough study of the critical role of diet in microbial community dynamics and the spread of AMR. This research underscores the importance of integrating genomic data into public health strategies to combat AMR. The gSpreadComp workflow is available at https://github.com/mdsufz/gSpreadComp/.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating comparative genomics and risk classification by assessing virulence, antimicrobial resistance, and plasmid spread in microbial communities with gSpreadComp.\",\"authors\":\"Jonas Coelho Kasmanas, Stefanía Magnúsdóttir, Junya Zhang, Kornelia Smalla, Michael Schloter, Peter F Stadler, André Carlos Ponce de Leon Ferreira de Carvalho, Ulisses Rocha\",\"doi\":\"10.1093/gigascience/giaf072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Comparative genomics, genetic spread analysis, and context-aware ranking are crucial in understanding microbial dynamics' impact on public health. gSpreadComp streamlines the path from in silico analysis to hypothesis generation. By integrating comparative genomics, genome annotation, normalization, plasmid-mediated gene transfer, and microbial resistance-virulence risk-ranking into a unified workflow, gSpreadComp facilitates hypothesis generation from complex microbial datasets.</p><p><strong>Findings: </strong>The gSpreadComp workflow works through 6 modular steps: taxonomy assignment, genome quality estimation, antimicrobial resistance (AMR) gene annotation, plasmid/chromosome classification, virulence factor annotation, and downstream analysis. Our workflow calculates gene spread using normalized weighted average prevalence and ranks potential resistance-virulence risk by integrating microbial resistance, virulence, and plasmid transmissibility data and producing an HTML report. As a use case, we analyzed 3,566 metagenome-assembled genomes recovered from human gut microbiomes across diets. Our findings indicated consistent AMR across diets, with diet-specific resistance patterns, such as increased bacitracin in vegans and tetracycline in omnivores. Notably, ketogenic diets showed a slightly higher resistance-virulence rank, while vegan and vegetarian diets encompassed more plasmid-mediated gene transfer.</p><p><strong>Conclusions: </strong>The gSpreadComp workflow aims to facilitate hypothesis generation for targeted experimental validations by the identification of concerning resistant hotspots in complex microbial datasets. Our study raises attention to a more thorough study of the critical role of diet in microbial community dynamics and the spread of AMR. This research underscores the importance of integrating genomic data into public health strategies to combat AMR. The gSpreadComp workflow is available at https://github.com/mdsufz/gSpreadComp/.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf072\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf072","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:比较基因组学、遗传传播分析和环境感知排序对于理解微生物动力学对公众健康的影响至关重要。gSpreadComp简化了从计算机分析到假设生成的路径。通过将比较基因组学、基因组注释、标准化、质粒介导的基因转移和微生物耐药性-毒力风险排序整合到一个统一的工作流程中,gSpreadComp有助于从复杂的微生物数据集生成假设。研究结果:gSpreadComp工作流程通过6个模块步骤:分类分配、基因组质量估计、抗微生物药物耐药性(AMR)基因注释、质粒/染色体分类、毒力因子注释和下游分析。我们的工作流程使用标准化加权平均流行率计算基因传播,并通过整合微生物耐药性、毒力和质粒传播率数据,对潜在的耐药-毒力风险进行排名,并生成HTML报告。作为一个用例,我们分析了从不同饮食的人类肠道微生物组中恢复的3,566个宏基因组组装基因组。我们的研究结果表明,在不同的饮食中,抗菌素耐药性是一致的,并且具有饮食特异性的耐药模式,例如素食者的杆菌肽增加,杂食动物的四环素增加。值得注意的是,生酮饮食显示出稍高的抗性-毒性等级,而纯素和素食饮食包含更多的质粒介导的基因转移。结论:gSpreadComp工作流程旨在通过识别复杂微生物数据集中相关的耐药热点,为有针对性的实验验证提供假设。我们的研究引起了人们对饮食在微生物群落动态和抗菌素耐药性传播中的关键作用的更深入研究的关注。这项研究强调了将基因组数据纳入抗击抗菌素耐药性的公共卫生战略的重要性。gSpreadComp工作流程可在https://github.com/mdsufz/gSpreadComp/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating comparative genomics and risk classification by assessing virulence, antimicrobial resistance, and plasmid spread in microbial communities with gSpreadComp.

Background: Comparative genomics, genetic spread analysis, and context-aware ranking are crucial in understanding microbial dynamics' impact on public health. gSpreadComp streamlines the path from in silico analysis to hypothesis generation. By integrating comparative genomics, genome annotation, normalization, plasmid-mediated gene transfer, and microbial resistance-virulence risk-ranking into a unified workflow, gSpreadComp facilitates hypothesis generation from complex microbial datasets.

Findings: The gSpreadComp workflow works through 6 modular steps: taxonomy assignment, genome quality estimation, antimicrobial resistance (AMR) gene annotation, plasmid/chromosome classification, virulence factor annotation, and downstream analysis. Our workflow calculates gene spread using normalized weighted average prevalence and ranks potential resistance-virulence risk by integrating microbial resistance, virulence, and plasmid transmissibility data and producing an HTML report. As a use case, we analyzed 3,566 metagenome-assembled genomes recovered from human gut microbiomes across diets. Our findings indicated consistent AMR across diets, with diet-specific resistance patterns, such as increased bacitracin in vegans and tetracycline in omnivores. Notably, ketogenic diets showed a slightly higher resistance-virulence rank, while vegan and vegetarian diets encompassed more plasmid-mediated gene transfer.

Conclusions: The gSpreadComp workflow aims to facilitate hypothesis generation for targeted experimental validations by the identification of concerning resistant hotspots in complex microbial datasets. Our study raises attention to a more thorough study of the critical role of diet in microbial community dynamics and the spread of AMR. This research underscores the importance of integrating genomic data into public health strategies to combat AMR. The gSpreadComp workflow is available at https://github.com/mdsufz/gSpreadComp/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信