{"title":"尿酸通过Nrf2/HO-1通路刺激PINK1/ parkin介导的线粒体自噬防止阿尔茨海默病神经元凋亡","authors":"Qian Zhang, De Xie, Binyang Chen, Linqian Yu, Jiayu Chen, Yunbo Yan, Mingyan Zhang, Qiang Wang, Yuemei Xi, Tetsuya Yamamoto, Hidenori Koyama, Jidong Cheng","doi":"10.1089/ars.2024.0837","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder among the elderly. Uric acid (UA), the end product of purine metabolism, functions as a potent free radical scavenger and helps mitigate oxidative stress. Several epidemiological studies revealed that serum UA levels are negatively correlated with the risk of AD; however, the molecular mechanisms remain unclear. Notably, β-amyloid (Aβ) deposition is implicated in the disruption of mitophagy, leading to neuronal apoptosis. In this study, we aim to elucidate the link between UA and AD and explore the underlying mechanisms. <b><i>Results:</i></b> We demonstrated that UA improved cognitive impairment in 5×FAD mice and reduced neuronal apoptosis both <i>in vivo</i> and <i>in vitro</i>. UA reversed the expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), p-Parkin<sup>S65</sup>, parkin, microtubule-associated protein 1 light chain 3 II/I, and p62 proteins inhibited by Aβ treatment, alleviated Aβ induced mitochondrial dysfunction, and disturbed dynamics. We found that UA activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) signaling both <i>in vivo</i> and <i>in vitro</i>. Furthermore, ML385, a Nrf2-specific inhibitor, reversed the increase in mitochondrial membrane potential and mitophagy promoted by UA and increased neuronal apoptosis in HT22 cells. The antiapoptotic effects of UA in HT22 cells were prevented by treatment with small interfering RNAs targeting PINK1. <b><i>Conclusions and Innovation:</i></b> These data suggest that UA stimulates PINK1/parkin-mediated mitophagy reducing Aβ-induced neuronal apoptosis through the Nrf2/HO-1 pathway, which plays a neuroprotective role in AD. Our findings confirmed that UA effectively reduces neuronal damage and cognitive impairment, highlighting its potential clinical applications in the treatment of AD. <i>Antioxid. Redox Signal.</i> 43, 381-399. [Figure: see text].</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"381-399"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uric Acid Stimulates PINK1/Parkin-Mediated Mitophagy via Nrf2/HO-1 Pathway to Protect Against Neuronal Apoptosis in Alzheimer's Disease.\",\"authors\":\"Qian Zhang, De Xie, Binyang Chen, Linqian Yu, Jiayu Chen, Yunbo Yan, Mingyan Zhang, Qiang Wang, Yuemei Xi, Tetsuya Yamamoto, Hidenori Koyama, Jidong Cheng\",\"doi\":\"10.1089/ars.2024.0837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder among the elderly. Uric acid (UA), the end product of purine metabolism, functions as a potent free radical scavenger and helps mitigate oxidative stress. Several epidemiological studies revealed that serum UA levels are negatively correlated with the risk of AD; however, the molecular mechanisms remain unclear. Notably, β-amyloid (Aβ) deposition is implicated in the disruption of mitophagy, leading to neuronal apoptosis. In this study, we aim to elucidate the link between UA and AD and explore the underlying mechanisms. <b><i>Results:</i></b> We demonstrated that UA improved cognitive impairment in 5×FAD mice and reduced neuronal apoptosis both <i>in vivo</i> and <i>in vitro</i>. UA reversed the expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), p-Parkin<sup>S65</sup>, parkin, microtubule-associated protein 1 light chain 3 II/I, and p62 proteins inhibited by Aβ treatment, alleviated Aβ induced mitochondrial dysfunction, and disturbed dynamics. We found that UA activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) signaling both <i>in vivo</i> and <i>in vitro</i>. Furthermore, ML385, a Nrf2-specific inhibitor, reversed the increase in mitochondrial membrane potential and mitophagy promoted by UA and increased neuronal apoptosis in HT22 cells. The antiapoptotic effects of UA in HT22 cells were prevented by treatment with small interfering RNAs targeting PINK1. <b><i>Conclusions and Innovation:</i></b> These data suggest that UA stimulates PINK1/parkin-mediated mitophagy reducing Aβ-induced neuronal apoptosis through the Nrf2/HO-1 pathway, which plays a neuroprotective role in AD. Our findings confirmed that UA effectively reduces neuronal damage and cognitive impairment, highlighting its potential clinical applications in the treatment of AD. <i>Antioxid. Redox Signal.</i> 43, 381-399. [Figure: see text].</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"381-399\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0837\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0837","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Uric Acid Stimulates PINK1/Parkin-Mediated Mitophagy via Nrf2/HO-1 Pathway to Protect Against Neuronal Apoptosis in Alzheimer's Disease.
Aims: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder among the elderly. Uric acid (UA), the end product of purine metabolism, functions as a potent free radical scavenger and helps mitigate oxidative stress. Several epidemiological studies revealed that serum UA levels are negatively correlated with the risk of AD; however, the molecular mechanisms remain unclear. Notably, β-amyloid (Aβ) deposition is implicated in the disruption of mitophagy, leading to neuronal apoptosis. In this study, we aim to elucidate the link between UA and AD and explore the underlying mechanisms. Results: We demonstrated that UA improved cognitive impairment in 5×FAD mice and reduced neuronal apoptosis both in vivo and in vitro. UA reversed the expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), p-ParkinS65, parkin, microtubule-associated protein 1 light chain 3 II/I, and p62 proteins inhibited by Aβ treatment, alleviated Aβ induced mitochondrial dysfunction, and disturbed dynamics. We found that UA activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) signaling both in vivo and in vitro. Furthermore, ML385, a Nrf2-specific inhibitor, reversed the increase in mitochondrial membrane potential and mitophagy promoted by UA and increased neuronal apoptosis in HT22 cells. The antiapoptotic effects of UA in HT22 cells were prevented by treatment with small interfering RNAs targeting PINK1. Conclusions and Innovation: These data suggest that UA stimulates PINK1/parkin-mediated mitophagy reducing Aβ-induced neuronal apoptosis through the Nrf2/HO-1 pathway, which plays a neuroprotective role in AD. Our findings confirmed that UA effectively reduces neuronal damage and cognitive impairment, highlighting its potential clinical applications in the treatment of AD. Antioxid. Redox Signal. 43, 381-399. [Figure: see text].
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology