基于节点分裂策略的cpt缺陷二维共价有机框架。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jialiang Liu, Guangshan Zhou, Jingming Yang, Chengtao Gong, Hao Wang, Wenmei Jiao, Yongwu Peng
{"title":"基于节点分裂策略的cpt缺陷二维共价有机框架。","authors":"Jialiang Liu, Guangshan Zhou, Jingming Yang, Chengtao Gong, Hao Wang, Wenmei Jiao, Yongwu Peng","doi":"10.1021/jacs.5c08143","DOIUrl":null,"url":null,"abstract":"<p><p>Reticular chemistry provides a robust platform for the construction of two-dimensional covalent organic frameworks (2D COFs) with tailored architectures and functionalities. A key synthetic challenge lies in the integration of densely arranged functional moieties without compromising long-range structural order. Herein, we report a node-splitting strategy in which half of the 6-connected <i>C</i><sub>3</sub>-symmetric nodes in the cpt topology are replaced by trios of 2-connected <i>C</i><sub>2<i>v</i></sub>-symmetric nodes, generating a new <b>cpt-defect</b> topology. Directional hydrogen bonding among the <i>C</i><sub>2<i>v</i></sub> nodes drives the formation of well-defined hydrogen-bonded nanotraps while preserving crystalline periodicity. The resulting COFs exhibit remarkable performance in gold ion (Au<sup>3+</sup>) recovery, with COF-36 achieving a maximum adsorption capacity of 1725 mg g<sup>-1</sup> and over 99% removal efficiency under strongly acidic conditions. Density functional theory (DFT) calculations attribute this high affinity to the geometric complementarity between the nanotrap cavity and the [AuCl<sub>4</sub>]<sup>-</sup> anion, enabling the formation of multiple stabilizing hydrogen bonds. This work establishes node splitting as a versatile approach for topological and functional engineering in COFs, broadening their potential for advanced applications.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Covalent Organic Frameworks with cpt-defect topology Enabled by a Node-Splitting Strategy.\",\"authors\":\"Jialiang Liu, Guangshan Zhou, Jingming Yang, Chengtao Gong, Hao Wang, Wenmei Jiao, Yongwu Peng\",\"doi\":\"10.1021/jacs.5c08143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reticular chemistry provides a robust platform for the construction of two-dimensional covalent organic frameworks (2D COFs) with tailored architectures and functionalities. A key synthetic challenge lies in the integration of densely arranged functional moieties without compromising long-range structural order. Herein, we report a node-splitting strategy in which half of the 6-connected <i>C</i><sub>3</sub>-symmetric nodes in the cpt topology are replaced by trios of 2-connected <i>C</i><sub>2<i>v</i></sub>-symmetric nodes, generating a new <b>cpt-defect</b> topology. Directional hydrogen bonding among the <i>C</i><sub>2<i>v</i></sub> nodes drives the formation of well-defined hydrogen-bonded nanotraps while preserving crystalline periodicity. The resulting COFs exhibit remarkable performance in gold ion (Au<sup>3+</sup>) recovery, with COF-36 achieving a maximum adsorption capacity of 1725 mg g<sup>-1</sup> and over 99% removal efficiency under strongly acidic conditions. Density functional theory (DFT) calculations attribute this high affinity to the geometric complementarity between the nanotrap cavity and the [AuCl<sub>4</sub>]<sup>-</sup> anion, enabling the formation of multiple stabilizing hydrogen bonds. This work establishes node splitting as a versatile approach for topological and functional engineering in COFs, broadening their potential for advanced applications.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c08143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c08143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

网状化学为构建具有定制结构和功能的二维共价有机框架(2D COFs)提供了一个强大的平台。一个关键的合成挑战在于在不影响长期结构秩序的情况下整合密集排列的功能部分。在此,我们报告了一种节点分裂策略,其中cpt拓扑中一半的6连接c3对称节点被3个2连接c2v对称节点所取代,从而产生新的cpt缺陷拓扑。C2v节点之间的定向氢键驱动形成明确的氢键纳米阱,同时保持晶体的周期性。在强酸性条件下,COF-36对金离子(Au3+)的最大吸附量为1725 mg g-1,去除率超过99%。密度泛函理论(DFT)计算将这种高亲和力归因于纳米阱腔和[AuCl4]-阴离子之间的几何互补性,从而形成了多个稳定的氢键。这项工作建立了节点分裂作为COFs拓扑和功能工程的通用方法,扩大了它们在高级应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Covalent Organic Frameworks with cpt-defect topology Enabled by a Node-Splitting Strategy.

Reticular chemistry provides a robust platform for the construction of two-dimensional covalent organic frameworks (2D COFs) with tailored architectures and functionalities. A key synthetic challenge lies in the integration of densely arranged functional moieties without compromising long-range structural order. Herein, we report a node-splitting strategy in which half of the 6-connected C3-symmetric nodes in the cpt topology are replaced by trios of 2-connected C2v-symmetric nodes, generating a new cpt-defect topology. Directional hydrogen bonding among the C2v nodes drives the formation of well-defined hydrogen-bonded nanotraps while preserving crystalline periodicity. The resulting COFs exhibit remarkable performance in gold ion (Au3+) recovery, with COF-36 achieving a maximum adsorption capacity of 1725 mg g-1 and over 99% removal efficiency under strongly acidic conditions. Density functional theory (DFT) calculations attribute this high affinity to the geometric complementarity between the nanotrap cavity and the [AuCl4]- anion, enabling the formation of multiple stabilizing hydrogen bonds. This work establishes node splitting as a versatile approach for topological and functional engineering in COFs, broadening their potential for advanced applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信