多组分玻色-爱因斯坦凝聚基态的黎曼优化方法

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Robert Altmann, Martin Hermann, Daniel Peterseim, Tatjana Stykel
{"title":"多组分玻色-爱因斯坦凝聚基态的黎曼优化方法","authors":"Robert Altmann, Martin Hermann, Daniel Peterseim, Tatjana Stykel","doi":"10.1093/imanum/draf046","DOIUrl":null,"url":null,"abstract":"This paper addresses the computation of ground states of multicomponent Bose–Einstein condensates, defined as the global minimizer of an energy functional on an infinite-dimensional generalised oblique manifold. We establish the existence of the ground state, prove its uniqueness up to scaling and characterize it as the solution to a coupled nonlinear eigenvector problem. By equipping the manifold with several Riemannian metrics, we introduce a suite of Riemannian gradient descent and Riemannian Newton methods. Metrics that incorporate first- or second-order information about the energy are particularly advantageous, effectively preconditioning the resulting methods. For a Riemannian gradient descent method with an energy-adaptive metric, we provide a qualitative global and quantitative local convergence analysis, confirming its reliability and robustness with respect to the choice of the spatial discretization. Numerical experiments highlight the computational efficiency of both the Riemannian gradient descent and Newton methods.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"46 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemannian optimization methods for ground states of multicomponent Bose–Einstein condensates\",\"authors\":\"Robert Altmann, Martin Hermann, Daniel Peterseim, Tatjana Stykel\",\"doi\":\"10.1093/imanum/draf046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the computation of ground states of multicomponent Bose–Einstein condensates, defined as the global minimizer of an energy functional on an infinite-dimensional generalised oblique manifold. We establish the existence of the ground state, prove its uniqueness up to scaling and characterize it as the solution to a coupled nonlinear eigenvector problem. By equipping the manifold with several Riemannian metrics, we introduce a suite of Riemannian gradient descent and Riemannian Newton methods. Metrics that incorporate first- or second-order information about the energy are particularly advantageous, effectively preconditioning the resulting methods. For a Riemannian gradient descent method with an energy-adaptive metric, we provide a qualitative global and quantitative local convergence analysis, confirming its reliability and robustness with respect to the choice of the spatial discretization. Numerical experiments highlight the computational efficiency of both the Riemannian gradient descent and Newton methods.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了多组分玻色-爱因斯坦凝聚体基态的计算,它被定义为无限维广义斜流形上能量泛函的全局极小值。我们建立了基态的存在性,证明了基态在尺度上的唯一性,并将其表征为一个耦合非线性特征向量问题的解。通过赋予流形若干黎曼度量,我们引入了一套黎曼梯度下降法和黎曼牛顿法。包含有关能量的一阶或二阶信息的度量是特别有利的,有效地预处理了所得到的方法。对于一种具有能量自适应度量的riemanian梯度下降方法,我们给出了定性的全局和定量的局部收敛分析,证实了它在空间离散化选择方面的可靠性和鲁棒性。数值实验证明了黎曼梯度下降法和牛顿法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian optimization methods for ground states of multicomponent Bose–Einstein condensates
This paper addresses the computation of ground states of multicomponent Bose–Einstein condensates, defined as the global minimizer of an energy functional on an infinite-dimensional generalised oblique manifold. We establish the existence of the ground state, prove its uniqueness up to scaling and characterize it as the solution to a coupled nonlinear eigenvector problem. By equipping the manifold with several Riemannian metrics, we introduce a suite of Riemannian gradient descent and Riemannian Newton methods. Metrics that incorporate first- or second-order information about the energy are particularly advantageous, effectively preconditioning the resulting methods. For a Riemannian gradient descent method with an energy-adaptive metric, we provide a qualitative global and quantitative local convergence analysis, confirming its reliability and robustness with respect to the choice of the spatial discretization. Numerical experiments highlight the computational efficiency of both the Riemannian gradient descent and Newton methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信