用广义单纯形法逼近导数

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Gabriel Jarry-Bolduc, Chayne Planiden
{"title":"用广义单纯形法逼近导数","authors":"Gabriel Jarry-Bolduc, Chayne Planiden","doi":"10.1093/imanum/draf053","DOIUrl":null,"url":null,"abstract":"This paper presents two methods for approximating a proper subset of the entries of a Hessian using only function evaluations. It is also shown how to approximate a Hessian-vector product with a minimal number of function evaluations. These approximations are obtained using the techniques called generalized simplex Hessian and generalized centred simplex Hessian. We show how to choose the matrices of directions involved in the computation of these two techniques, depending on the entries of the Hessian of interest. We discuss the number of function evaluations required in each case and develop a general formula to approximate all order-$P$ partial derivatives. Since only function evaluations are required to compute the methods discussed in this paper they are suitable for use in derivative-free optimization methods.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"643 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using generalized simplex methods to approximate derivatives\",\"authors\":\"Gabriel Jarry-Bolduc, Chayne Planiden\",\"doi\":\"10.1093/imanum/draf053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two methods for approximating a proper subset of the entries of a Hessian using only function evaluations. It is also shown how to approximate a Hessian-vector product with a minimal number of function evaluations. These approximations are obtained using the techniques called generalized simplex Hessian and generalized centred simplex Hessian. We show how to choose the matrices of directions involved in the computation of these two techniques, depending on the entries of the Hessian of interest. We discuss the number of function evaluations required in each case and develop a general formula to approximate all order-$P$ partial derivatives. Since only function evaluations are required to compute the methods discussed in this paper they are suitable for use in derivative-free optimization methods.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"643 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf053\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了两种仅用函数求值逼近Hessian表项的适当子集的方法。它也显示了如何近似一个黑森向量积与最小数量的函数评估。这些近似是用广义单形Hessian和广义中心单形Hessian技术得到的。我们展示了如何选择这两种技术计算中涉及的方向矩阵,这取决于感兴趣的黑森矩阵的条目。我们讨论了每种情况下所需的函数计算次数,并开发了一个近似所有阶P偏导数的一般公式。由于本文所讨论的方法只需要计算函数,因此它们适用于无导数优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using generalized simplex methods to approximate derivatives
This paper presents two methods for approximating a proper subset of the entries of a Hessian using only function evaluations. It is also shown how to approximate a Hessian-vector product with a minimal number of function evaluations. These approximations are obtained using the techniques called generalized simplex Hessian and generalized centred simplex Hessian. We show how to choose the matrices of directions involved in the computation of these two techniques, depending on the entries of the Hessian of interest. We discuss the number of function evaluations required in each case and develop a general formula to approximate all order-$P$ partial derivatives. Since only function evaluations are required to compute the methods discussed in this paper they are suitable for use in derivative-free optimization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信