Marko Pratnekar , Vivek Garg , Baldeep Kaur , Michael S.A. Bradley , David C. Cullen
{"title":"提出一种新的月球风化层模拟物类别:在地球重力下表现出与月球重力下的天然风化层相当的自重的减少颗粒密度模拟物","authors":"Marko Pratnekar , Vivek Garg , Baldeep Kaur , Michael S.A. Bradley , David C. Cullen","doi":"10.1016/j.actaastro.2025.06.056","DOIUrl":null,"url":null,"abstract":"<div><div>Current “normal density” lunar regolith simulants used in Earth gravity can be viewed as a poor replication of bulk material handling behaviour of lunar regolith in lunar gravity. The six-times greater self-weight of such normal simulants on Earth compared to the Moon can be the viewed as the underlying cause. The use of such normal simulants in Earth gravity as part of technology development for lunar use may fail to adequately predict lunar behaviour and result in sub-optimal outcomes. This paper proposes a new class of reduced self-weight lunar regolith simulants to minimise this issue.</div><div>The current work elaborates the case for this new class of lunar regolith simulants with reduced particle density of one-sixth native lunar regolith resulting in reduced self-weight. To justify further this approach a series of studies are reported to highlight the expected differences between the current and proposed simulant uses. First, analytical arguments are used based around Jenike theory and the concept of Bond Number to highlight expected differences. Second, Discrete Element Method simulation is used show the expected difference in behaviour between the two simulants classes. Third, a laboratory breadboarded discharge hopper is used to demonstrate behaviour differences between normal and reduced self-weight stimulants. Additionally, a list of requirements for such reduced self-weight simulants is proposed.</div><div>The work concludes that the proposed new class of reduced particle density lunar simulants appears to have value and should be further pursued by the relevant communities.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"235 ","pages":"Pages 747-758"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of a new category of lunar regolith simulants: Reduced particle-density simulants that exhibit equivalent self-weight in Earth gravity to native regolith in lunar gravity\",\"authors\":\"Marko Pratnekar , Vivek Garg , Baldeep Kaur , Michael S.A. Bradley , David C. Cullen\",\"doi\":\"10.1016/j.actaastro.2025.06.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current “normal density” lunar regolith simulants used in Earth gravity can be viewed as a poor replication of bulk material handling behaviour of lunar regolith in lunar gravity. The six-times greater self-weight of such normal simulants on Earth compared to the Moon can be the viewed as the underlying cause. The use of such normal simulants in Earth gravity as part of technology development for lunar use may fail to adequately predict lunar behaviour and result in sub-optimal outcomes. This paper proposes a new class of reduced self-weight lunar regolith simulants to minimise this issue.</div><div>The current work elaborates the case for this new class of lunar regolith simulants with reduced particle density of one-sixth native lunar regolith resulting in reduced self-weight. To justify further this approach a series of studies are reported to highlight the expected differences between the current and proposed simulant uses. First, analytical arguments are used based around Jenike theory and the concept of Bond Number to highlight expected differences. Second, Discrete Element Method simulation is used show the expected difference in behaviour between the two simulants classes. Third, a laboratory breadboarded discharge hopper is used to demonstrate behaviour differences between normal and reduced self-weight stimulants. Additionally, a list of requirements for such reduced self-weight simulants is proposed.</div><div>The work concludes that the proposed new class of reduced particle density lunar simulants appears to have value and should be further pursued by the relevant communities.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"235 \",\"pages\":\"Pages 747-758\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525004084\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525004084","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Proposal of a new category of lunar regolith simulants: Reduced particle-density simulants that exhibit equivalent self-weight in Earth gravity to native regolith in lunar gravity
Current “normal density” lunar regolith simulants used in Earth gravity can be viewed as a poor replication of bulk material handling behaviour of lunar regolith in lunar gravity. The six-times greater self-weight of such normal simulants on Earth compared to the Moon can be the viewed as the underlying cause. The use of such normal simulants in Earth gravity as part of technology development for lunar use may fail to adequately predict lunar behaviour and result in sub-optimal outcomes. This paper proposes a new class of reduced self-weight lunar regolith simulants to minimise this issue.
The current work elaborates the case for this new class of lunar regolith simulants with reduced particle density of one-sixth native lunar regolith resulting in reduced self-weight. To justify further this approach a series of studies are reported to highlight the expected differences between the current and proposed simulant uses. First, analytical arguments are used based around Jenike theory and the concept of Bond Number to highlight expected differences. Second, Discrete Element Method simulation is used show the expected difference in behaviour between the two simulants classes. Third, a laboratory breadboarded discharge hopper is used to demonstrate behaviour differences between normal and reduced self-weight stimulants. Additionally, a list of requirements for such reduced self-weight simulants is proposed.
The work concludes that the proposed new class of reduced particle density lunar simulants appears to have value and should be further pursued by the relevant communities.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.