Mohamed Abdalsalam Hanfi , Olalekan Saheed Alade , Abdulkadir Tanimu , Mohamed Mahmoud , Sulaiman A. Alarifi
{"title":"研究了砂岩储层热解反应对储层原位产氢的影响","authors":"Mohamed Abdalsalam Hanfi , Olalekan Saheed Alade , Abdulkadir Tanimu , Mohamed Mahmoud , Sulaiman A. Alarifi","doi":"10.1016/j.petlm.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ combustion gasification (ISCG) is a technology in the field pilot stage used for hydrogen generation from oil reservoirs. ISCG is implemented by injecting an oxidant (pure oxygen, air, …) into the reservoir to trigger in-situ chemical reactions responsible for hydrogen generation. Pyrolysis reaction is one of the significant reactions triggered by in-situ combustion (ISC). This study used a fixed-bed micro-activity test (MAT) unit to investigate hydrogen generation from crude oil through pyrolysis. Crude oil pyrolysis experiments were conducted in the MAT unit under different temperatures (300 °C, 400 °C, 500 °C, 600 °C), atmospheric pressure, and under a flow of a nitrogen gas. The results showed that the threshold initiation temperature of hydrogen generation and coke formation was about 500 °C. The experiments demonstrated that the introduced sandstone enhanced hydrogen generation and coke formation at high temperatures. The maximum volume of hydrogen generated with sandstone effect reached 8.15 mL at 600 °C, while that without sandstone was only 6.39 mL at 600 °C. The study provides deep insights into the in-situ hydrogen generation from crude oil through pyrolysis. In addition, the obtained data of various pyrolysis products provide a comprehensive representation of crude oil pyrolysis that could promote the existing reaction models of in-situ hydrogen generation from the gasification of crude oil. The findings demonstrate the potential of adopting pyrolysis of crude oil for direct hydrogen generation from reservoirs.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"11 3","pages":"Pages 366-376"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental study to investigate the role of pyrolysis reaction on in-situ hydrogen generation from sandstone oil reservoirs\",\"authors\":\"Mohamed Abdalsalam Hanfi , Olalekan Saheed Alade , Abdulkadir Tanimu , Mohamed Mahmoud , Sulaiman A. Alarifi\",\"doi\":\"10.1016/j.petlm.2025.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-situ combustion gasification (ISCG) is a technology in the field pilot stage used for hydrogen generation from oil reservoirs. ISCG is implemented by injecting an oxidant (pure oxygen, air, …) into the reservoir to trigger in-situ chemical reactions responsible for hydrogen generation. Pyrolysis reaction is one of the significant reactions triggered by in-situ combustion (ISC). This study used a fixed-bed micro-activity test (MAT) unit to investigate hydrogen generation from crude oil through pyrolysis. Crude oil pyrolysis experiments were conducted in the MAT unit under different temperatures (300 °C, 400 °C, 500 °C, 600 °C), atmospheric pressure, and under a flow of a nitrogen gas. The results showed that the threshold initiation temperature of hydrogen generation and coke formation was about 500 °C. The experiments demonstrated that the introduced sandstone enhanced hydrogen generation and coke formation at high temperatures. The maximum volume of hydrogen generated with sandstone effect reached 8.15 mL at 600 °C, while that without sandstone was only 6.39 mL at 600 °C. The study provides deep insights into the in-situ hydrogen generation from crude oil through pyrolysis. In addition, the obtained data of various pyrolysis products provide a comprehensive representation of crude oil pyrolysis that could promote the existing reaction models of in-situ hydrogen generation from the gasification of crude oil. The findings demonstrate the potential of adopting pyrolysis of crude oil for direct hydrogen generation from reservoirs.</div></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"11 3\",\"pages\":\"Pages 366-376\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656125000355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656125000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An experimental study to investigate the role of pyrolysis reaction on in-situ hydrogen generation from sandstone oil reservoirs
In-situ combustion gasification (ISCG) is a technology in the field pilot stage used for hydrogen generation from oil reservoirs. ISCG is implemented by injecting an oxidant (pure oxygen, air, …) into the reservoir to trigger in-situ chemical reactions responsible for hydrogen generation. Pyrolysis reaction is one of the significant reactions triggered by in-situ combustion (ISC). This study used a fixed-bed micro-activity test (MAT) unit to investigate hydrogen generation from crude oil through pyrolysis. Crude oil pyrolysis experiments were conducted in the MAT unit under different temperatures (300 °C, 400 °C, 500 °C, 600 °C), atmospheric pressure, and under a flow of a nitrogen gas. The results showed that the threshold initiation temperature of hydrogen generation and coke formation was about 500 °C. The experiments demonstrated that the introduced sandstone enhanced hydrogen generation and coke formation at high temperatures. The maximum volume of hydrogen generated with sandstone effect reached 8.15 mL at 600 °C, while that without sandstone was only 6.39 mL at 600 °C. The study provides deep insights into the in-situ hydrogen generation from crude oil through pyrolysis. In addition, the obtained data of various pyrolysis products provide a comprehensive representation of crude oil pyrolysis that could promote the existing reaction models of in-situ hydrogen generation from the gasification of crude oil. The findings demonstrate the potential of adopting pyrolysis of crude oil for direct hydrogen generation from reservoirs.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing