Fe-Co双位点p-d轨道杂化:加速析氧动力学的电子重组

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Hui Su , Furong Ye , Siyi Zhang , Changcun Han , Jipeng Dong , Zhixin Dai , Xinguo Ma , Lei Ge
{"title":"Fe-Co双位点p-d轨道杂化:加速析氧动力学的电子重组","authors":"Hui Su ,&nbsp;Furong Ye ,&nbsp;Siyi Zhang ,&nbsp;Changcun Han ,&nbsp;Jipeng Dong ,&nbsp;Zhixin Dai ,&nbsp;Xinguo Ma ,&nbsp;Lei Ge","doi":"10.1016/j.jcis.2025.138278","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish anodic oxygen evolution reaction (OER) kinetics remains a critical bottleneck for sustainable hydrogen production via water electrolysis. Guided by Density Functional Theory (DFT) calculations, we engineered Fe-CoS<sub>2</sub>/Ni<sub>3</sub>S<sub>4</sub> dual-site catalysts where Co<sup>3+</sup> and Fe<sup>3+</sup> centers synergistically optimize <em>p-d</em> orbital hybridization to enhance OER kinetics. Operando analyses reveal Co<sup>3+</sup> as primary active sites facilitating rate-limiting OOH* → O<sub>2</sub> desorption with Gibbs free energy (ΔG) reduced by 0.94 eV, while Fe-induced electron delocalization lowers intermediate coupling barriers. Notably, the catalyst facilitates dynamic reconstruction, generating metastable Co<sup>3+</sup> species with optimized eg orbital occupancy (t<sub>2</sub>g<sup>5</sup>eg<sup>1</sup> configuration) and strengthened <em>p-d</em> hybridization via Fe-mediated charge transfer. This electronic synergy enables ultralow overpotentials of 156 mV (hydrogen evolution reaction HER) and 230 mV (OER) at 50 mA cm<sup>−2</sup>, with a cell voltage of 1.48 V for overall water splitting at 10 mA cm<sup>−2</sup>. The dual-site architecture simultaneously suppresses metal dissolution (&lt;12 % after 20 h) while maintaining 89.2 % initial activity. This work establishes a dual-regulation strategy: atomic-level orbital engineering for OER intermediate optimization and dynamic surface reconstruction for HER-active phase stabilization, offering a paradigm for designing robust bifunctional electrocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"699 ","pages":"Article 138278"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-Co dual-sites p-d orbital hybridization: Electronic restructuring for accelerated oxygen evolution kinetics\",\"authors\":\"Hui Su ,&nbsp;Furong Ye ,&nbsp;Siyi Zhang ,&nbsp;Changcun Han ,&nbsp;Jipeng Dong ,&nbsp;Zhixin Dai ,&nbsp;Xinguo Ma ,&nbsp;Lei Ge\",\"doi\":\"10.1016/j.jcis.2025.138278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sluggish anodic oxygen evolution reaction (OER) kinetics remains a critical bottleneck for sustainable hydrogen production via water electrolysis. Guided by Density Functional Theory (DFT) calculations, we engineered Fe-CoS<sub>2</sub>/Ni<sub>3</sub>S<sub>4</sub> dual-site catalysts where Co<sup>3+</sup> and Fe<sup>3+</sup> centers synergistically optimize <em>p-d</em> orbital hybridization to enhance OER kinetics. Operando analyses reveal Co<sup>3+</sup> as primary active sites facilitating rate-limiting OOH* → O<sub>2</sub> desorption with Gibbs free energy (ΔG) reduced by 0.94 eV, while Fe-induced electron delocalization lowers intermediate coupling barriers. Notably, the catalyst facilitates dynamic reconstruction, generating metastable Co<sup>3+</sup> species with optimized eg orbital occupancy (t<sub>2</sub>g<sup>5</sup>eg<sup>1</sup> configuration) and strengthened <em>p-d</em> hybridization via Fe-mediated charge transfer. This electronic synergy enables ultralow overpotentials of 156 mV (hydrogen evolution reaction HER) and 230 mV (OER) at 50 mA cm<sup>−2</sup>, with a cell voltage of 1.48 V for overall water splitting at 10 mA cm<sup>−2</sup>. The dual-site architecture simultaneously suppresses metal dissolution (&lt;12 % after 20 h) while maintaining 89.2 % initial activity. This work establishes a dual-regulation strategy: atomic-level orbital engineering for OER intermediate optimization and dynamic surface reconstruction for HER-active phase stabilization, offering a paradigm for designing robust bifunctional electrocatalysts.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"699 \",\"pages\":\"Article 138278\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725016698\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725016698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

缓慢的阳极析氧反应(OER)动力学仍然是水电解可持续制氢的关键瓶颈。在密度泛函理论(DFT)计算的指导下,我们设计了Fe-CoS2/Ni3S4双位点催化剂,其中Co3+和Fe3+中心协同优化p-d轨道杂化以提高OER动力学。Operando分析表明,Co3+作为主要活性位点促进了OOH*→O2的限制性脱附,Gibbs自由能(ΔG)降低了0.94 eV,而fe诱导的电子离域降低了中间耦合势垒。值得注意的是,该催化剂促进了动态重构,生成了具有优化eg轨道占用(t2g5eg1构型)的亚稳Co3+物种,并通过fe介导的电荷转移加强了p-d杂化。这种电子协同作用可在50 mA cm - 2时实现156 mV(析氢反应HER)和230 mV (OER)的超低过电位,电池电压为1.48 V,在10 mA cm - 2时实现总体水分解。双位点结构同时抑制金属溶解(20 h后为12%),同时保持89.2%的初始活性。本研究建立了一种双调节策略:原子水平轨道工程用于OER中间优化和动态表面重建用于her活性相稳定,为设计稳健的双功能电催化剂提供了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe-Co dual-sites p-d orbital hybridization: Electronic restructuring for accelerated oxygen evolution kinetics

Fe-Co dual-sites p-d orbital hybridization: Electronic restructuring for accelerated oxygen evolution kinetics
The sluggish anodic oxygen evolution reaction (OER) kinetics remains a critical bottleneck for sustainable hydrogen production via water electrolysis. Guided by Density Functional Theory (DFT) calculations, we engineered Fe-CoS2/Ni3S4 dual-site catalysts where Co3+ and Fe3+ centers synergistically optimize p-d orbital hybridization to enhance OER kinetics. Operando analyses reveal Co3+ as primary active sites facilitating rate-limiting OOH* → O2 desorption with Gibbs free energy (ΔG) reduced by 0.94 eV, while Fe-induced electron delocalization lowers intermediate coupling barriers. Notably, the catalyst facilitates dynamic reconstruction, generating metastable Co3+ species with optimized eg orbital occupancy (t2g5eg1 configuration) and strengthened p-d hybridization via Fe-mediated charge transfer. This electronic synergy enables ultralow overpotentials of 156 mV (hydrogen evolution reaction HER) and 230 mV (OER) at 50 mA cm−2, with a cell voltage of 1.48 V for overall water splitting at 10 mA cm−2. The dual-site architecture simultaneously suppresses metal dissolution (<12 % after 20 h) while maintaining 89.2 % initial activity. This work establishes a dual-regulation strategy: atomic-level orbital engineering for OER intermediate optimization and dynamic surface reconstruction for HER-active phase stabilization, offering a paradigm for designing robust bifunctional electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信