三协同中空AuAg@CeO2等离子纳米酶通过智能手机集成的双模式生物传感实现快速碱性磷酸酶检测

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Juan Tan , Shuaishuai Ding , Ling He , Xiu-wu Bian , Gan Tian
{"title":"三协同中空AuAg@CeO2等离子纳米酶通过智能手机集成的双模式生物传感实现快速碱性磷酸酶检测","authors":"Juan Tan ,&nbsp;Shuaishuai Ding ,&nbsp;Ling He ,&nbsp;Xiu-wu Bian ,&nbsp;Gan Tian","doi":"10.1016/j.jcis.2025.138272","DOIUrl":null,"url":null,"abstract":"<div><div>Alkaline phosphatase (ALP), a pivotal hydrolase in human tissues, serves as a key biomarker for disease diagnostics. Here, we report a hollow AuAg@CeO<sub>2</sub> plasmonic nanozyme engineered for ALP detection through triple synergistic catalysis. The hierarchically designed hollow architecture enhances near-infrared (NIR) photon capture via multiscale light scattering, while the AuAg-CeO<sub>2</sub> heterojunction enables directional charge transfer. ALP-mediated ascorbic acid generation triggers a cascade mechanism: (1) plasmonic hot electrons regenerate CeO<sub>2</sub> oxygen vacancies to optimize H<sub>2</sub>O<sub>2</sub> adsorption; (2) photothermal activation facilitates H<sub>2</sub>O<sub>2</sub> dissociation; and (3) localized surface plasmon resonance (LSPR) amplifies interfacial electron kinetics. This synergy boosts its peroxidase-like activity, achieving nanomolar ALP sensitivity—a 100-fold improvement over commercial kits within 10-min. Integrated smartphone-based colorimetric dual-mode analysis enables cross-validated ALP quantification with &lt;10 % matrix interference, validated by human samples with 94.8–105.4 % recovery. By deciphering structure-LSPR-activity correlations, this work pioneers adaptive nanozyme design and intelligent diagnostic platforms for precision medicine, bridging critical gaps in point-of-care testing and early disease surveillance.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"699 ","pages":"Article 138272"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple-synergistic hollow AuAg@CeO2 plasmonic nanozymes enable rapid alkaline phosphatase detection via smartphone-integrated dual-mode biosensing\",\"authors\":\"Juan Tan ,&nbsp;Shuaishuai Ding ,&nbsp;Ling He ,&nbsp;Xiu-wu Bian ,&nbsp;Gan Tian\",\"doi\":\"10.1016/j.jcis.2025.138272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alkaline phosphatase (ALP), a pivotal hydrolase in human tissues, serves as a key biomarker for disease diagnostics. Here, we report a hollow AuAg@CeO<sub>2</sub> plasmonic nanozyme engineered for ALP detection through triple synergistic catalysis. The hierarchically designed hollow architecture enhances near-infrared (NIR) photon capture via multiscale light scattering, while the AuAg-CeO<sub>2</sub> heterojunction enables directional charge transfer. ALP-mediated ascorbic acid generation triggers a cascade mechanism: (1) plasmonic hot electrons regenerate CeO<sub>2</sub> oxygen vacancies to optimize H<sub>2</sub>O<sub>2</sub> adsorption; (2) photothermal activation facilitates H<sub>2</sub>O<sub>2</sub> dissociation; and (3) localized surface plasmon resonance (LSPR) amplifies interfacial electron kinetics. This synergy boosts its peroxidase-like activity, achieving nanomolar ALP sensitivity—a 100-fold improvement over commercial kits within 10-min. Integrated smartphone-based colorimetric dual-mode analysis enables cross-validated ALP quantification with &lt;10 % matrix interference, validated by human samples with 94.8–105.4 % recovery. By deciphering structure-LSPR-activity correlations, this work pioneers adaptive nanozyme design and intelligent diagnostic platforms for precision medicine, bridging critical gaps in point-of-care testing and early disease surveillance.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"699 \",\"pages\":\"Article 138272\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725016637\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725016637","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碱性磷酸酶(ALP)是人体组织中的关键水解酶,是疾病诊断的关键生物标志物。在这里,我们报道了一种中空的AuAg@CeO2等离子纳米酶,通过三重协同催化用于ALP检测。分层设计的中空结构通过多尺度光散射增强了近红外(NIR)光子捕获,而AuAg-CeO2异质结则实现了定向电荷转移。alp介导的抗坏血酸生成触发级联机制:(1)等离子体热电子再生CeO2氧空位,优化H2O2吸附;(2)光热活化有利于H2O2解离;(3)局域表面等离子体共振(LSPR)放大界面电子动力学。这种协同作用增强了其过氧化物酶样活性,在10分钟内实现了纳摩尔ALP敏感性,比商业试剂盒提高了100倍。集成的基于智能手机的比色双模式分析能够以<; 10%的基质干扰交叉验证ALP定量,通过人体样品验证,回收率为94.8 - 105.4%。通过破译结构- lspr -活性相关性,这项工作开创了自适应纳米酶设计和精准医学智能诊断平台,弥合了护理点检测和早期疾病监测的关键差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triple-synergistic hollow AuAg@CeO2 plasmonic nanozymes enable rapid alkaline phosphatase detection via smartphone-integrated dual-mode biosensing

Triple-synergistic hollow AuAg@CeO2 plasmonic nanozymes enable rapid alkaline phosphatase detection via smartphone-integrated dual-mode biosensing
Alkaline phosphatase (ALP), a pivotal hydrolase in human tissues, serves as a key biomarker for disease diagnostics. Here, we report a hollow AuAg@CeO2 plasmonic nanozyme engineered for ALP detection through triple synergistic catalysis. The hierarchically designed hollow architecture enhances near-infrared (NIR) photon capture via multiscale light scattering, while the AuAg-CeO2 heterojunction enables directional charge transfer. ALP-mediated ascorbic acid generation triggers a cascade mechanism: (1) plasmonic hot electrons regenerate CeO2 oxygen vacancies to optimize H2O2 adsorption; (2) photothermal activation facilitates H2O2 dissociation; and (3) localized surface plasmon resonance (LSPR) amplifies interfacial electron kinetics. This synergy boosts its peroxidase-like activity, achieving nanomolar ALP sensitivity—a 100-fold improvement over commercial kits within 10-min. Integrated smartphone-based colorimetric dual-mode analysis enables cross-validated ALP quantification with <10 % matrix interference, validated by human samples with 94.8–105.4 % recovery. By deciphering structure-LSPR-activity correlations, this work pioneers adaptive nanozyme design and intelligent diagnostic platforms for precision medicine, bridging critical gaps in point-of-care testing and early disease surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信