Yibo Li , Zahra Sadri , Katherine J. Blandin , David A. Narvaiz , Uma K. Aryal , Joaquin N. Lugo , Nicholas P. Poolos , Amy L. Brewster
{"title":"Pten基因敲除小鼠和人类难治性癫痫癫痫脑组织的性别特异性蛋白质组学分析","authors":"Yibo Li , Zahra Sadri , Katherine J. Blandin , David A. Narvaiz , Uma K. Aryal , Joaquin N. Lugo , Nicholas P. Poolos , Amy L. Brewster","doi":"10.1016/j.expneurol.2025.115361","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale</h3><div>Epilepsy presents significant sex-based disparities in prevalence and manifestation. Epidemiological studies reveal that epilepsy is more prevalent in males, with lesional types being more common, whereas idiopathic generalized epilepsies are more frequently observed in females. These differences stress the importance of considering sex-specific factors in epilepsy diagnosis, treatment, and mechanistic research using preclinical models. To elucidate potential molecular differences that could explain these disparities and inform personalized treatment strategies, we conducted a proteomic analysis of epileptic brain tissues from both an experimental mouse model of genetic epilepsy and humans with drug-resistant epilepsy (DRE).</div></div><div><h3>Methods</h3><div>We employed mass spectrometry-based proteomic analysis on brain tissues from DRE patients and the <em>Pten</em> knockout (KO) mouse model of genetic epilepsy with focal cortical dysplasia. Mouse samples included hippocampi from adult wild-type (WT) and <em>Pten</em> KO mice (4–5 per group and sex). Human samples included the temporal cortex from 12 DRE adult patients (7 males, 5 females) and 5 non-epileptic (NE) controls (2 males, 3 females). Brain biopsies were collected with patients' informed consent under approved IRB protocols (Indiana University Health Biorepository). Proteomic profiles were analyzed using principal component analysis (PCA) along with volcano plots to identify significant changes in protein expression. The enrichment analysis of differentially expressed proteins was conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway.</div></div><div><h3>Results</h3><div>PCA revealed distinct clustering of brain proteomes between epilepsy and control cases in both human and mice, with 390 proteins showing significant differences in human and 437 proteins in mouse samples. These proteins are primarily associated with ion channels, synaptic processes, and neuronal energy regulation. In the mouse model, males have more pronounced proteomic changes than females, with enrichment in metabolic pathways and VEGF signaling pathway, indicating a more severe vascular permeability impairment in males. In human DRE cases, 118 proteins were significantly changed by comparing epileptic females to males. Pathway analysis revealed changes in metabolic pathways and the HIF-1 signaling pathway, indicating that altered neuronal activity and inflammation may lead to increased oxygen consumption.</div></div><div><h3>Conclusion</h3><div>These findings highlight differences between epilepsy and control brain samples in both humans and mice. Sex-specific analysis revealed distinct pathway enrichments between females and males, with males exhibiting a broader range of proteomic alterations. While these observations suggest potential sex-related differences in proteomic profiles, larger studies are needed to further validate these patterns. This exploratory work provides initial insights into possible underlying mechanisms of epilepsy and suggests that sex may be an important consideration in future epilepsy studies, though more comprehensive studies are required to establish therapeutic interventions.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"392 ","pages":"Article 115361"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex-specific proteomic analysis of epileptic brain tissues from Pten knockout mice and human refractory epilepsy\",\"authors\":\"Yibo Li , Zahra Sadri , Katherine J. Blandin , David A. Narvaiz , Uma K. Aryal , Joaquin N. Lugo , Nicholas P. Poolos , Amy L. Brewster\",\"doi\":\"10.1016/j.expneurol.2025.115361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale</h3><div>Epilepsy presents significant sex-based disparities in prevalence and manifestation. Epidemiological studies reveal that epilepsy is more prevalent in males, with lesional types being more common, whereas idiopathic generalized epilepsies are more frequently observed in females. These differences stress the importance of considering sex-specific factors in epilepsy diagnosis, treatment, and mechanistic research using preclinical models. To elucidate potential molecular differences that could explain these disparities and inform personalized treatment strategies, we conducted a proteomic analysis of epileptic brain tissues from both an experimental mouse model of genetic epilepsy and humans with drug-resistant epilepsy (DRE).</div></div><div><h3>Methods</h3><div>We employed mass spectrometry-based proteomic analysis on brain tissues from DRE patients and the <em>Pten</em> knockout (KO) mouse model of genetic epilepsy with focal cortical dysplasia. Mouse samples included hippocampi from adult wild-type (WT) and <em>Pten</em> KO mice (4–5 per group and sex). Human samples included the temporal cortex from 12 DRE adult patients (7 males, 5 females) and 5 non-epileptic (NE) controls (2 males, 3 females). Brain biopsies were collected with patients' informed consent under approved IRB protocols (Indiana University Health Biorepository). Proteomic profiles were analyzed using principal component analysis (PCA) along with volcano plots to identify significant changes in protein expression. The enrichment analysis of differentially expressed proteins was conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway.</div></div><div><h3>Results</h3><div>PCA revealed distinct clustering of brain proteomes between epilepsy and control cases in both human and mice, with 390 proteins showing significant differences in human and 437 proteins in mouse samples. These proteins are primarily associated with ion channels, synaptic processes, and neuronal energy regulation. In the mouse model, males have more pronounced proteomic changes than females, with enrichment in metabolic pathways and VEGF signaling pathway, indicating a more severe vascular permeability impairment in males. In human DRE cases, 118 proteins were significantly changed by comparing epileptic females to males. Pathway analysis revealed changes in metabolic pathways and the HIF-1 signaling pathway, indicating that altered neuronal activity and inflammation may lead to increased oxygen consumption.</div></div><div><h3>Conclusion</h3><div>These findings highlight differences between epilepsy and control brain samples in both humans and mice. Sex-specific analysis revealed distinct pathway enrichments between females and males, with males exhibiting a broader range of proteomic alterations. While these observations suggest potential sex-related differences in proteomic profiles, larger studies are needed to further validate these patterns. This exploratory work provides initial insights into possible underlying mechanisms of epilepsy and suggests that sex may be an important consideration in future epilepsy studies, though more comprehensive studies are required to establish therapeutic interventions.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"392 \",\"pages\":\"Article 115361\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625002250\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625002250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Sex-specific proteomic analysis of epileptic brain tissues from Pten knockout mice and human refractory epilepsy
Rationale
Epilepsy presents significant sex-based disparities in prevalence and manifestation. Epidemiological studies reveal that epilepsy is more prevalent in males, with lesional types being more common, whereas idiopathic generalized epilepsies are more frequently observed in females. These differences stress the importance of considering sex-specific factors in epilepsy diagnosis, treatment, and mechanistic research using preclinical models. To elucidate potential molecular differences that could explain these disparities and inform personalized treatment strategies, we conducted a proteomic analysis of epileptic brain tissues from both an experimental mouse model of genetic epilepsy and humans with drug-resistant epilepsy (DRE).
Methods
We employed mass spectrometry-based proteomic analysis on brain tissues from DRE patients and the Pten knockout (KO) mouse model of genetic epilepsy with focal cortical dysplasia. Mouse samples included hippocampi from adult wild-type (WT) and Pten KO mice (4–5 per group and sex). Human samples included the temporal cortex from 12 DRE adult patients (7 males, 5 females) and 5 non-epileptic (NE) controls (2 males, 3 females). Brain biopsies were collected with patients' informed consent under approved IRB protocols (Indiana University Health Biorepository). Proteomic profiles were analyzed using principal component analysis (PCA) along with volcano plots to identify significant changes in protein expression. The enrichment analysis of differentially expressed proteins was conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway.
Results
PCA revealed distinct clustering of brain proteomes between epilepsy and control cases in both human and mice, with 390 proteins showing significant differences in human and 437 proteins in mouse samples. These proteins are primarily associated with ion channels, synaptic processes, and neuronal energy regulation. In the mouse model, males have more pronounced proteomic changes than females, with enrichment in metabolic pathways and VEGF signaling pathway, indicating a more severe vascular permeability impairment in males. In human DRE cases, 118 proteins were significantly changed by comparing epileptic females to males. Pathway analysis revealed changes in metabolic pathways and the HIF-1 signaling pathway, indicating that altered neuronal activity and inflammation may lead to increased oxygen consumption.
Conclusion
These findings highlight differences between epilepsy and control brain samples in both humans and mice. Sex-specific analysis revealed distinct pathway enrichments between females and males, with males exhibiting a broader range of proteomic alterations. While these observations suggest potential sex-related differences in proteomic profiles, larger studies are needed to further validate these patterns. This exploratory work provides initial insights into possible underlying mechanisms of epilepsy and suggests that sex may be an important consideration in future epilepsy studies, though more comprehensive studies are required to establish therapeutic interventions.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.