Diana Liz Jimenez , Débora Taisa Keller da Silva , Talita da Paz Costa Sauda , Adriana Araújo de Almeida-Apolonio , Emanuele P.O. Roque , Pamella Fukuda de Castilho , João Víctor de Andrade dos Santos , Sidnei M. Silva , Lucas Pizzuti , Amilcar M. Junior , Victor M. Deflon , Kelly Mari Pires de Oliveira , Gleison Antônio Casagrande
{"title":"镉(II)配合物与吡啶/二羧酸配体作为治疗口腔念珠菌病的有前途的分子","authors":"Diana Liz Jimenez , Débora Taisa Keller da Silva , Talita da Paz Costa Sauda , Adriana Araújo de Almeida-Apolonio , Emanuele P.O. Roque , Pamella Fukuda de Castilho , João Víctor de Andrade dos Santos , Sidnei M. Silva , Lucas Pizzuti , Amilcar M. Junior , Victor M. Deflon , Kelly Mari Pires de Oliveira , Gleison Antônio Casagrande","doi":"10.1016/j.jinorgbio.2025.112980","DOIUrl":null,"url":null,"abstract":"<div><div>Overgrowth of <em>Candida</em> spp., known for its strong adhesion to biotic and abiotic surfaces, makes treatment difficult in denture stomatitis. To address this challenge, two novel cadmium(II) complexes containing 2,5-pyridinedicarboxylic acid (H<sub>2</sub>L) (complex <strong>1</strong> [Cd(HL)(H<sub>2</sub>O)(DMSO)I]<sub>2</sub> and [Cd(HL)(H<sub>2</sub>O)(bipy)I] complex <strong>2</strong>), were synthesized and fully characterized by X-ray diffractometry, HRMS-ESI (+) spectrometry, <sup>1</sup>H and <sup>13</sup>C NMR, FT-IR and elemental analysis. These complexes were evaluated for their antifungal, antibiofilm, hemolytic, and mutagenic properties. The interaction of these complexes with established antifungal agents was also investigated. Both complexes demonstrated remarkable antifungal activity, particularly against <em>C. albicans</em> and <em>C. krusei</em>, with MIC ranging from 62.5 (97.91 μM) to 0.48 (0.75 μM) μg/mL and MFC from 125 (195.82 μM) to 3.80 (5.95 μM) μg/mL. Furthermore, these complexes effectively inhibited <em>C. krusei</em> biofilm formation on prosthetic acrylic resin test specimens, with complex <strong>2</strong> showing superior activity. The complexes also displayed synergistic effects with fluconazole, furthermore, sorbitol assays have shown that cell wall is one of the targets of the tested complexes. Importantly, hemolysis assays indicated that the complexes were non-cytotoxic to human erythrocytes, and mutagenicity assays confirmed their non-mutagenic nature. These findings suggest that the synthesized cadmium(II) complexes, particularly complex <strong>2</strong>, possess significant potential as therapeutic agents for the treatment of denture stomatitis and oral candidiasis in general.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112980"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium(II) complexes with pyridine/dicarboxylic acid ligands as promising molecules for the treatment of oral candidiasis\",\"authors\":\"Diana Liz Jimenez , Débora Taisa Keller da Silva , Talita da Paz Costa Sauda , Adriana Araújo de Almeida-Apolonio , Emanuele P.O. Roque , Pamella Fukuda de Castilho , João Víctor de Andrade dos Santos , Sidnei M. Silva , Lucas Pizzuti , Amilcar M. Junior , Victor M. Deflon , Kelly Mari Pires de Oliveira , Gleison Antônio Casagrande\",\"doi\":\"10.1016/j.jinorgbio.2025.112980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Overgrowth of <em>Candida</em> spp., known for its strong adhesion to biotic and abiotic surfaces, makes treatment difficult in denture stomatitis. To address this challenge, two novel cadmium(II) complexes containing 2,5-pyridinedicarboxylic acid (H<sub>2</sub>L) (complex <strong>1</strong> [Cd(HL)(H<sub>2</sub>O)(DMSO)I]<sub>2</sub> and [Cd(HL)(H<sub>2</sub>O)(bipy)I] complex <strong>2</strong>), were synthesized and fully characterized by X-ray diffractometry, HRMS-ESI (+) spectrometry, <sup>1</sup>H and <sup>13</sup>C NMR, FT-IR and elemental analysis. These complexes were evaluated for their antifungal, antibiofilm, hemolytic, and mutagenic properties. The interaction of these complexes with established antifungal agents was also investigated. Both complexes demonstrated remarkable antifungal activity, particularly against <em>C. albicans</em> and <em>C. krusei</em>, with MIC ranging from 62.5 (97.91 μM) to 0.48 (0.75 μM) μg/mL and MFC from 125 (195.82 μM) to 3.80 (5.95 μM) μg/mL. Furthermore, these complexes effectively inhibited <em>C. krusei</em> biofilm formation on prosthetic acrylic resin test specimens, with complex <strong>2</strong> showing superior activity. The complexes also displayed synergistic effects with fluconazole, furthermore, sorbitol assays have shown that cell wall is one of the targets of the tested complexes. Importantly, hemolysis assays indicated that the complexes were non-cytotoxic to human erythrocytes, and mutagenicity assays confirmed their non-mutagenic nature. These findings suggest that the synthesized cadmium(II) complexes, particularly complex <strong>2</strong>, possess significant potential as therapeutic agents for the treatment of denture stomatitis and oral candidiasis in general.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"271 \",\"pages\":\"Article 112980\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425001606\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001606","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cadmium(II) complexes with pyridine/dicarboxylic acid ligands as promising molecules for the treatment of oral candidiasis
Overgrowth of Candida spp., known for its strong adhesion to biotic and abiotic surfaces, makes treatment difficult in denture stomatitis. To address this challenge, two novel cadmium(II) complexes containing 2,5-pyridinedicarboxylic acid (H2L) (complex 1 [Cd(HL)(H2O)(DMSO)I]2 and [Cd(HL)(H2O)(bipy)I] complex 2), were synthesized and fully characterized by X-ray diffractometry, HRMS-ESI (+) spectrometry, 1H and 13C NMR, FT-IR and elemental analysis. These complexes were evaluated for their antifungal, antibiofilm, hemolytic, and mutagenic properties. The interaction of these complexes with established antifungal agents was also investigated. Both complexes demonstrated remarkable antifungal activity, particularly against C. albicans and C. krusei, with MIC ranging from 62.5 (97.91 μM) to 0.48 (0.75 μM) μg/mL and MFC from 125 (195.82 μM) to 3.80 (5.95 μM) μg/mL. Furthermore, these complexes effectively inhibited C. krusei biofilm formation on prosthetic acrylic resin test specimens, with complex 2 showing superior activity. The complexes also displayed synergistic effects with fluconazole, furthermore, sorbitol assays have shown that cell wall is one of the targets of the tested complexes. Importantly, hemolysis assays indicated that the complexes were non-cytotoxic to human erythrocytes, and mutagenicity assays confirmed their non-mutagenic nature. These findings suggest that the synthesized cadmium(II) complexes, particularly complex 2, possess significant potential as therapeutic agents for the treatment of denture stomatitis and oral candidiasis in general.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.