{"title":"多层随机块模型连通性矩阵估计的极限结果","authors":"Wenqing Su , Xiao Guo , Ying Yang","doi":"10.1016/j.jspi.2025.106313","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-layer networks arise naturally in various domains including biology, finance and sociology, among others. The multi-layer stochastic block model (multi-layer SBM) is commonly used for community detection in the multi-layer networks. Most of current literature focuses on statistical consistency of community detection methods under multi-layer SBMs. However, the asymptotic distributional properties are also indispensable which play an important role in statistical inference. In this work, we aim to study the estimation and asymptotic properties of the layer-wise scaled connectivity matrices in the multi-layer SBM. We study and analyze a computationally tractable method for estimating the scaled connectivity matrices. Under the multi-layer SBM and its variant multi-layer degree-corrected SBM, we establish the asymptotic normality of the estimated matrices under mild conditions, which can be used for interval estimation and hypothesis testing. Simulations show the superior performance of proposed method over existing methods in two considered statistical inference tasks. We apply the method to a real dataset and obtain interpretable results. In addition, we develop a moment estimator for the non-scaled connectivity matrices and study its asymptotic properties.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"241 ","pages":"Article 106313"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit results for estimation of connectivity matrix in multi-layer stochastic block models\",\"authors\":\"Wenqing Su , Xiao Guo , Ying Yang\",\"doi\":\"10.1016/j.jspi.2025.106313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-layer networks arise naturally in various domains including biology, finance and sociology, among others. The multi-layer stochastic block model (multi-layer SBM) is commonly used for community detection in the multi-layer networks. Most of current literature focuses on statistical consistency of community detection methods under multi-layer SBMs. However, the asymptotic distributional properties are also indispensable which play an important role in statistical inference. In this work, we aim to study the estimation and asymptotic properties of the layer-wise scaled connectivity matrices in the multi-layer SBM. We study and analyze a computationally tractable method for estimating the scaled connectivity matrices. Under the multi-layer SBM and its variant multi-layer degree-corrected SBM, we establish the asymptotic normality of the estimated matrices under mild conditions, which can be used for interval estimation and hypothesis testing. Simulations show the superior performance of proposed method over existing methods in two considered statistical inference tasks. We apply the method to a real dataset and obtain interpretable results. In addition, we develop a moment estimator for the non-scaled connectivity matrices and study its asymptotic properties.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"241 \",\"pages\":\"Article 106313\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000515\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000515","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Limit results for estimation of connectivity matrix in multi-layer stochastic block models
Multi-layer networks arise naturally in various domains including biology, finance and sociology, among others. The multi-layer stochastic block model (multi-layer SBM) is commonly used for community detection in the multi-layer networks. Most of current literature focuses on statistical consistency of community detection methods under multi-layer SBMs. However, the asymptotic distributional properties are also indispensable which play an important role in statistical inference. In this work, we aim to study the estimation and asymptotic properties of the layer-wise scaled connectivity matrices in the multi-layer SBM. We study and analyze a computationally tractable method for estimating the scaled connectivity matrices. Under the multi-layer SBM and its variant multi-layer degree-corrected SBM, we establish the asymptotic normality of the estimated matrices under mild conditions, which can be used for interval estimation and hypothesis testing. Simulations show the superior performance of proposed method over existing methods in two considered statistical inference tasks. We apply the method to a real dataset and obtain interpretable results. In addition, we develop a moment estimator for the non-scaled connectivity matrices and study its asymptotic properties.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.