非退化多元u统计量在零假设和局部备择假设下的渐近性

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Alain Desgagné , Christian Genest , Frédéric Ouimet
{"title":"非退化多元u统计量在零假设和局部备择假设下的渐近性","authors":"Alain Desgagné ,&nbsp;Christian Genest ,&nbsp;Frédéric Ouimet","doi":"10.1016/j.jmva.2024.105398","DOIUrl":null,"url":null,"abstract":"<div><div>The large-sample behavior of non-degenerate multivariate <span><math><mi>U</mi></math></span>-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, <em>Ann. Statist.</em>) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105398"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for non-degenerate multivariate U-statistics with estimated nuisance parameters under the null and local alternative hypotheses\",\"authors\":\"Alain Desgagné ,&nbsp;Christian Genest ,&nbsp;Frédéric Ouimet\",\"doi\":\"10.1016/j.jmva.2024.105398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The large-sample behavior of non-degenerate multivariate <span><math><mi>U</mi></math></span>-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, <em>Ann. Statist.</em>) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"208 \",\"pages\":\"Article 105398\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24001052\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在核依赖于可一致估计的参数的假设下,研究了任意度非退化多元u统计量的大样本行为。给出了温和的正则性条件,保证这些统计量在零假设和局部备选序列下都是渐近多元高斯的。兰德尔斯的作品(1982,安。在数据和核值可以是多元的而不是单变量的情况下,首次研究了局部选择下的极限行为,并量化了知道某些干扰参数的影响。这些结果可以应用于广泛的拟合优度测试上下文,如两个具体示例所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for non-degenerate multivariate U-statistics with estimated nuisance parameters under the null and local alternative hypotheses
The large-sample behavior of non-degenerate multivariate U-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, Ann. Statist.) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信