Alain Desgagné , Christian Genest , Frédéric Ouimet
{"title":"非退化多元u统计量在零假设和局部备择假设下的渐近性","authors":"Alain Desgagné , Christian Genest , Frédéric Ouimet","doi":"10.1016/j.jmva.2024.105398","DOIUrl":null,"url":null,"abstract":"<div><div>The large-sample behavior of non-degenerate multivariate <span><math><mi>U</mi></math></span>-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, <em>Ann. Statist.</em>) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105398"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for non-degenerate multivariate U-statistics with estimated nuisance parameters under the null and local alternative hypotheses\",\"authors\":\"Alain Desgagné , Christian Genest , Frédéric Ouimet\",\"doi\":\"10.1016/j.jmva.2024.105398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The large-sample behavior of non-degenerate multivariate <span><math><mi>U</mi></math></span>-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, <em>Ann. Statist.</em>) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"208 \",\"pages\":\"Article 105398\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24001052\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotics for non-degenerate multivariate U-statistics with estimated nuisance parameters under the null and local alternative hypotheses
The large-sample behavior of non-degenerate multivariate -statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are provided which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, Ann. Statist.) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in two specific examples.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.