{"title":"三维$三维$能量临界非线性Schrödinger方程高斯测度的拟不变性","authors":"Chenmin Sun, Nikolay Tzvetkov","doi":"10.1002/cpa.70001","DOIUrl":null,"url":null,"abstract":"<p>We consider the <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>d</mi>\n </mrow>\n <annotation>$3d$</annotation>\n </semantics></math> energy critical nonlinear Schrödinger equation with data distributed according to the Gaussian measure with covariance operator <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>s</mi>\n </mrow>\n </msup>\n <annotation>$(1-\\Delta)^{-s}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Δ</mi>\n <annotation>$\\Delta$</annotation>\n </semantics></math> is the Laplace operator and <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math> is sufficiently large. We prove that the flow sends full measure sets to full measure sets. We also discuss some simple applications. This extends a previous result by Planchon-Visciglia and the second author from <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mi>d</mi>\n </mrow>\n <annotation>$1d$</annotation>\n </semantics></math> to higher dimensions.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 12","pages":"2305-2353"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.70001","citationCount":"0","resultStr":"{\"title\":\"Quasi-invariance of Gaussian measures for the \\n \\n \\n 3\\n d\\n \\n $3d$\\n energy critical nonlinear Schrödinger equation\",\"authors\":\"Chenmin Sun, Nikolay Tzvetkov\",\"doi\":\"10.1002/cpa.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$3d$</annotation>\\n </semantics></math> energy critical nonlinear Schrödinger equation with data distributed according to the Gaussian measure with covariance operator <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mi>s</mi>\\n </mrow>\\n </msup>\\n <annotation>$(1-\\\\Delta)^{-s}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>Δ</mi>\\n <annotation>$\\\\Delta$</annotation>\\n </semantics></math> is the Laplace operator and <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$s$</annotation>\\n </semantics></math> is sufficiently large. We prove that the flow sends full measure sets to full measure sets. We also discuss some simple applications. This extends a previous result by Planchon-Visciglia and the second author from <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$1d$</annotation>\\n </semantics></math> to higher dimensions.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"78 12\",\"pages\":\"2305-2353\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.70001\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.70001","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quasi-invariance of Gaussian measures for the
3
d
$3d$
energy critical nonlinear Schrödinger equation
We consider the energy critical nonlinear Schrödinger equation with data distributed according to the Gaussian measure with covariance operator , where is the Laplace operator and is sufficiently large. We prove that the flow sends full measure sets to full measure sets. We also discuss some simple applications. This extends a previous result by Planchon-Visciglia and the second author from to higher dimensions.