Logan Mulroney, Henry J Taylor, Angela Lee, Amy J Swift, Mihail Zdravkov, Lori L Bonnycastle, Shelise Y Brooks, Brian N Lee, Tomas Fitzgerald, Narisu Narisu, Leslie G Biesecker, Michael R Erdos, Francesco Nicassio, Ewan Birney, Francis S Collins, D Leland Taylor
{"title":"直接RNA纳米孔测序揭示了葡萄糖刺激人类胰腺β细胞系后快速RNA修饰的变化。","authors":"Logan Mulroney, Henry J Taylor, Angela Lee, Amy J Swift, Mihail Zdravkov, Lori L Bonnycastle, Shelise Y Brooks, Brian N Lee, Tomas Fitzgerald, Narisu Narisu, Leslie G Biesecker, Michael R Erdos, Francesco Nicassio, Ewan Birney, Francis S Collins, D Leland Taylor","doi":"10.1101/2025.06.12.659352","DOIUrl":null,"url":null,"abstract":"<p><p>RNA modifications are critical regulators of gene expression and cellular processes; however, the epitranscriptome is less well studied than the epigenome. Here, we studied transcriptome-wide changes in RNA modifications and expression levels in two human pancreatic beta-cell lines, EndoC-BH1 and EndoC-BH3, after one hour of glucose stimulation. Using direct RNA nanopore sequencing (dRNA-seq), we measured N6-methyladenosine (m6A), 5-methylcytosine (m5C), inosine, and pseudouridine concurrently across the transcriptome. We developed a differential RNA modification method and identified 1,697 differentially modified sites (DMSs) across all modifications. These DMSs were largely independent of changes in gene expression levels and enriched in transcripts for type 2 diabetes (T2D) genes. Our study demonstrates how dRNA-seq can be used to detect and quantify RNA modification changes in response to cellular stimuli at the single-nucleotide level and provides new insights into RNA-mediated mechanisms that may contribute to normal beta-cell response and potential dysfunction in T2D.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct RNA nanopore sequencing reveals rapid RNA modification changes following glucose stimulation of human pancreatic beta-cell lines.\",\"authors\":\"Logan Mulroney, Henry J Taylor, Angela Lee, Amy J Swift, Mihail Zdravkov, Lori L Bonnycastle, Shelise Y Brooks, Brian N Lee, Tomas Fitzgerald, Narisu Narisu, Leslie G Biesecker, Michael R Erdos, Francesco Nicassio, Ewan Birney, Francis S Collins, D Leland Taylor\",\"doi\":\"10.1101/2025.06.12.659352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA modifications are critical regulators of gene expression and cellular processes; however, the epitranscriptome is less well studied than the epigenome. Here, we studied transcriptome-wide changes in RNA modifications and expression levels in two human pancreatic beta-cell lines, EndoC-BH1 and EndoC-BH3, after one hour of glucose stimulation. Using direct RNA nanopore sequencing (dRNA-seq), we measured N6-methyladenosine (m6A), 5-methylcytosine (m5C), inosine, and pseudouridine concurrently across the transcriptome. We developed a differential RNA modification method and identified 1,697 differentially modified sites (DMSs) across all modifications. These DMSs were largely independent of changes in gene expression levels and enriched in transcripts for type 2 diabetes (T2D) genes. Our study demonstrates how dRNA-seq can be used to detect and quantify RNA modification changes in response to cellular stimuli at the single-nucleotide level and provides new insights into RNA-mediated mechanisms that may contribute to normal beta-cell response and potential dysfunction in T2D.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.06.12.659352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.12.659352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct RNA nanopore sequencing reveals rapid RNA modification changes following glucose stimulation of human pancreatic beta-cell lines.
RNA modifications are critical regulators of gene expression and cellular processes; however, the epitranscriptome is less well studied than the epigenome. Here, we studied transcriptome-wide changes in RNA modifications and expression levels in two human pancreatic beta-cell lines, EndoC-BH1 and EndoC-BH3, after one hour of glucose stimulation. Using direct RNA nanopore sequencing (dRNA-seq), we measured N6-methyladenosine (m6A), 5-methylcytosine (m5C), inosine, and pseudouridine concurrently across the transcriptome. We developed a differential RNA modification method and identified 1,697 differentially modified sites (DMSs) across all modifications. These DMSs were largely independent of changes in gene expression levels and enriched in transcripts for type 2 diabetes (T2D) genes. Our study demonstrates how dRNA-seq can be used to detect and quantify RNA modification changes in response to cellular stimuli at the single-nucleotide level and provides new insights into RNA-mediated mechanisms that may contribute to normal beta-cell response and potential dysfunction in T2D.