{"title":"深部脑刺激治疗耐药癫痫:现在和未来的观点。","authors":"Young-Min Shon, Hea Ree Park, Seunghoon Lee","doi":"10.14581/jer.25004","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant epilepsy (DRE) remains a formidable clinical challenge, affecting nearly 30-40% of patients despite optimized pharmacotherapy. In patients for whom resective surgery is contraindicated or poses unacceptable risks, neuromodulatory therapies-most notably deep brain stimulation (DBS)-have emerged as viable and reversible treatment options. This narrative review critically examines the current applications of DBS for DRE, with a focus on major targets including the anterior thalamic nucleus, centromedian nucleus, hippocampus, and emerging targets such as the pulvinar. We provide an in-depth discussion of the therapeutic mechanisms underlying DBS-from local cellular inhibition and desynchronization to widespread network modulation and neuroplasticity induction-and review the latest advances in sensing technologies, patient-specific connectivity mapping, and closed loop stimulation paradigms. In addition to integrating data from randomized controlled trials, long-term observational studies, and advanced imaging investigations, we discuss limitations, persistent challenges, and future research directions that will guide clinical decision-making and optimize therapeutic outcomes.</p>","PeriodicalId":73741,"journal":{"name":"Journal of epilepsy research","volume":"15 1","pages":"33-41"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185915/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Brain Stimulation Therapy for Drug-Resistant Epilepsy: Present and Future Perspectives.\",\"authors\":\"Young-Min Shon, Hea Ree Park, Seunghoon Lee\",\"doi\":\"10.14581/jer.25004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-resistant epilepsy (DRE) remains a formidable clinical challenge, affecting nearly 30-40% of patients despite optimized pharmacotherapy. In patients for whom resective surgery is contraindicated or poses unacceptable risks, neuromodulatory therapies-most notably deep brain stimulation (DBS)-have emerged as viable and reversible treatment options. This narrative review critically examines the current applications of DBS for DRE, with a focus on major targets including the anterior thalamic nucleus, centromedian nucleus, hippocampus, and emerging targets such as the pulvinar. We provide an in-depth discussion of the therapeutic mechanisms underlying DBS-from local cellular inhibition and desynchronization to widespread network modulation and neuroplasticity induction-and review the latest advances in sensing technologies, patient-specific connectivity mapping, and closed loop stimulation paradigms. In addition to integrating data from randomized controlled trials, long-term observational studies, and advanced imaging investigations, we discuss limitations, persistent challenges, and future research directions that will guide clinical decision-making and optimize therapeutic outcomes.</p>\",\"PeriodicalId\":73741,\"journal\":{\"name\":\"Journal of epilepsy research\",\"volume\":\"15 1\",\"pages\":\"33-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185915/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of epilepsy research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14581/jer.25004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of epilepsy research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14581/jer.25004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Brain Stimulation Therapy for Drug-Resistant Epilepsy: Present and Future Perspectives.
Drug-resistant epilepsy (DRE) remains a formidable clinical challenge, affecting nearly 30-40% of patients despite optimized pharmacotherapy. In patients for whom resective surgery is contraindicated or poses unacceptable risks, neuromodulatory therapies-most notably deep brain stimulation (DBS)-have emerged as viable and reversible treatment options. This narrative review critically examines the current applications of DBS for DRE, with a focus on major targets including the anterior thalamic nucleus, centromedian nucleus, hippocampus, and emerging targets such as the pulvinar. We provide an in-depth discussion of the therapeutic mechanisms underlying DBS-from local cellular inhibition and desynchronization to widespread network modulation and neuroplasticity induction-and review the latest advances in sensing technologies, patient-specific connectivity mapping, and closed loop stimulation paradigms. In addition to integrating data from randomized controlled trials, long-term observational studies, and advanced imaging investigations, we discuss limitations, persistent challenges, and future research directions that will guide clinical decision-making and optimize therapeutic outcomes.