Nathan C Hurley, Nihar Desai, Sanket S Dhruva, Rohan Khera, Wade Schulz, Chenxi Huang, Jeptha Curtis, Frederick Masoudi, John Rumsfeld, Sahand Negahban, Harlan M Krumholz, Bobak J Mortazavi
{"title":"建立一个动态模型来评估经皮冠状动脉介入治疗后大出血的风险。","authors":"Nathan C Hurley, Nihar Desai, Sanket S Dhruva, Rohan Khera, Wade Schulz, Chenxi Huang, Jeptha Curtis, Frederick Masoudi, John Rumsfeld, Sahand Negahban, Harlan M Krumholz, Bobak J Mortazavi","doi":"10.1371/journal.pdig.0000906","DOIUrl":null,"url":null,"abstract":"<p><p>While static risk models may identify key driving risk factors, the dynamic nature of risk requires up-to-date risk information to guide treatment decision making. Bleeding is a complication of percutaneous coronary intervention (PCI), and existing risk models produce only a single risk estimate anchored at a single point in time, despite the dynamic nature of this risk. Using data available from the National Cardiovascular Data Registry (NCDR) CathPCI, we trained 6 different tree-based machine learning models to estimate the risk of bleeding at key decision points: 1) choice of access site, 2) prescription of medication before PCI, and 3) choice of closure device. We began with 3,423,170 PCIs performed between July 2009 through April 2015. We included only index PCIs and removed anyone who had missing data regarding bleeding events or underwent coronary artery bypass grafting during the index admission. We included 2,868,808 PCIs; 2,314,446 (80.7%) before 2014 for training and 554,362 (19.3%) remaining for validation. This study considered all data available from the Registry prior to patient discharge: patient characteristics, coronary anatomy and lesion characterization, laboratory data, past medical history, anti-coagulation, stent type, and closure method categories. The primary outcome was any in-hospital bleeding event within 72 hours after the start of the PCI procedure. Discrimination improved from an area under the receiver operating characteristic curve (AUROC) of 0.812 using only presentation variables to 0.845 using all variables. Among 123,712 patients classified as low risk by the initial model, 14,441 were reclassified as moderate risk (1.4% experienced bleeds), while 723 were reclassified as high risk (12.5% experienced bleeds). Static risk prediction models have more predictive error than those that update risk prediction with newly available data, which provides up-to-date risk prediction for individualized care throughout a hospitalization.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 6","pages":"e0000906"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards a dynamic model to estimate evolving risk of major bleeding after percutaneous coronary intervention.\",\"authors\":\"Nathan C Hurley, Nihar Desai, Sanket S Dhruva, Rohan Khera, Wade Schulz, Chenxi Huang, Jeptha Curtis, Frederick Masoudi, John Rumsfeld, Sahand Negahban, Harlan M Krumholz, Bobak J Mortazavi\",\"doi\":\"10.1371/journal.pdig.0000906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While static risk models may identify key driving risk factors, the dynamic nature of risk requires up-to-date risk information to guide treatment decision making. Bleeding is a complication of percutaneous coronary intervention (PCI), and existing risk models produce only a single risk estimate anchored at a single point in time, despite the dynamic nature of this risk. Using data available from the National Cardiovascular Data Registry (NCDR) CathPCI, we trained 6 different tree-based machine learning models to estimate the risk of bleeding at key decision points: 1) choice of access site, 2) prescription of medication before PCI, and 3) choice of closure device. We began with 3,423,170 PCIs performed between July 2009 through April 2015. We included only index PCIs and removed anyone who had missing data regarding bleeding events or underwent coronary artery bypass grafting during the index admission. We included 2,868,808 PCIs; 2,314,446 (80.7%) before 2014 for training and 554,362 (19.3%) remaining for validation. This study considered all data available from the Registry prior to patient discharge: patient characteristics, coronary anatomy and lesion characterization, laboratory data, past medical history, anti-coagulation, stent type, and closure method categories. The primary outcome was any in-hospital bleeding event within 72 hours after the start of the PCI procedure. Discrimination improved from an area under the receiver operating characteristic curve (AUROC) of 0.812 using only presentation variables to 0.845 using all variables. Among 123,712 patients classified as low risk by the initial model, 14,441 were reclassified as moderate risk (1.4% experienced bleeds), while 723 were reclassified as high risk (12.5% experienced bleeds). Static risk prediction models have more predictive error than those that update risk prediction with newly available data, which provides up-to-date risk prediction for individualized care throughout a hospitalization.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 6\",\"pages\":\"e0000906\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a dynamic model to estimate evolving risk of major bleeding after percutaneous coronary intervention.
While static risk models may identify key driving risk factors, the dynamic nature of risk requires up-to-date risk information to guide treatment decision making. Bleeding is a complication of percutaneous coronary intervention (PCI), and existing risk models produce only a single risk estimate anchored at a single point in time, despite the dynamic nature of this risk. Using data available from the National Cardiovascular Data Registry (NCDR) CathPCI, we trained 6 different tree-based machine learning models to estimate the risk of bleeding at key decision points: 1) choice of access site, 2) prescription of medication before PCI, and 3) choice of closure device. We began with 3,423,170 PCIs performed between July 2009 through April 2015. We included only index PCIs and removed anyone who had missing data regarding bleeding events or underwent coronary artery bypass grafting during the index admission. We included 2,868,808 PCIs; 2,314,446 (80.7%) before 2014 for training and 554,362 (19.3%) remaining for validation. This study considered all data available from the Registry prior to patient discharge: patient characteristics, coronary anatomy and lesion characterization, laboratory data, past medical history, anti-coagulation, stent type, and closure method categories. The primary outcome was any in-hospital bleeding event within 72 hours after the start of the PCI procedure. Discrimination improved from an area under the receiver operating characteristic curve (AUROC) of 0.812 using only presentation variables to 0.845 using all variables. Among 123,712 patients classified as low risk by the initial model, 14,441 were reclassified as moderate risk (1.4% experienced bleeds), while 723 were reclassified as high risk (12.5% experienced bleeds). Static risk prediction models have more predictive error than those that update risk prediction with newly available data, which provides up-to-date risk prediction for individualized care throughout a hospitalization.