体育虚拟未来:利用基于深度学习的分析探索体育和虚拟现实专利。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-19 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2919
Jea Woog Lee, Sangmin Song, JungMin Yun, Doug Hyun Han, YoungBin Kim
{"title":"体育虚拟未来:利用基于深度学习的分析探索体育和虚拟现实专利。","authors":"Jea Woog Lee, Sangmin Song, JungMin Yun, Doug Hyun Han, YoungBin Kim","doi":"10.7717/peerj-cs.2919","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the convergence of sports and emerging technologies from the Fourth Industrial Revolution, with a focus on virtual reality (VR) applications. Using patent big data, we introduce SportsBERT, a bidirectional encoder representation from transformers (BERT)-based algorithm tailored for enhanced natural language processing in sports-related knowledge-based documents. Through topic modeling, we extract key themes and clusters from sports-related VR patents, providing insights into the knowledge structure and technological trends in VR applications for sports. Our analysis identifies key drivers of technological advancement, including spatial hardware, tactile human-computer interactions, aerobic exercise, rehabilitation, and swing sports. Additionally, we highlight challenges such as the high cost and usability limitations of current VR devices. This study presents the first deep learning-based topic modeling approach specialized for sports patents and offers a comprehensive roadmap for current developments and future trajectories in VR sports technologies.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2919"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sporting a virtual future: exploring sports and virtual reality patents using deep learning-based analysis.\",\"authors\":\"Jea Woog Lee, Sangmin Song, JungMin Yun, Doug Hyun Han, YoungBin Kim\",\"doi\":\"10.7717/peerj-cs.2919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the convergence of sports and emerging technologies from the Fourth Industrial Revolution, with a focus on virtual reality (VR) applications. Using patent big data, we introduce SportsBERT, a bidirectional encoder representation from transformers (BERT)-based algorithm tailored for enhanced natural language processing in sports-related knowledge-based documents. Through topic modeling, we extract key themes and clusters from sports-related VR patents, providing insights into the knowledge structure and technological trends in VR applications for sports. Our analysis identifies key drivers of technological advancement, including spatial hardware, tactile human-computer interactions, aerobic exercise, rehabilitation, and swing sports. Additionally, we highlight challenges such as the high cost and usability limitations of current VR devices. This study presents the first deep learning-based topic modeling approach specialized for sports patents and offers a comprehensive roadmap for current developments and future trajectories in VR sports technologies.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2919\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2919\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2919","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了第四次工业革命中体育和新兴技术的融合,重点是虚拟现实(VR)应用。利用专利大数据,我们介绍了SportsBERT,这是一种基于变形器(BERT)的双向编码器表示算法,专为增强体育相关知识文档的自然语言处理而设计。通过主题建模,从体育相关VR专利中提取关键主题和聚类,深入了解体育VR应用的知识结构和技术趋势。我们的分析确定了技术进步的关键驱动因素,包括空间硬件、触觉人机交互、有氧运动、康复和摇摆运动。此外,我们还强调了当前VR设备的高成本和可用性限制等挑战。本研究提出了第一个专门针对体育专利的基于深度学习的主题建模方法,并为VR体育技术的当前发展和未来轨迹提供了全面的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sporting a virtual future: exploring sports and virtual reality patents using deep learning-based analysis.

We investigate the convergence of sports and emerging technologies from the Fourth Industrial Revolution, with a focus on virtual reality (VR) applications. Using patent big data, we introduce SportsBERT, a bidirectional encoder representation from transformers (BERT)-based algorithm tailored for enhanced natural language processing in sports-related knowledge-based documents. Through topic modeling, we extract key themes and clusters from sports-related VR patents, providing insights into the knowledge structure and technological trends in VR applications for sports. Our analysis identifies key drivers of technological advancement, including spatial hardware, tactile human-computer interactions, aerobic exercise, rehabilitation, and swing sports. Additionally, we highlight challenges such as the high cost and usability limitations of current VR devices. This study presents the first deep learning-based topic modeling approach specialized for sports patents and offers a comprehensive roadmap for current developments and future trajectories in VR sports technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信